Exploiting images for video recognition with hierarchical generative adversarial networks

Feiwu Yu, Xinxiao Wu*, Yuchao Sun, Lixin Duan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Citations (Scopus)

Abstract

Existing deep learning methods of video recognition usually require a large number of labeled videos for training. But for a new task, videos are often unlabeled and it is also time-consuming and labor-intensive to annotate them. Instead of human annotation, we try to make use of existing fully labeled images to help recognize those videos. However, due to the problem of domain shifts and heterogeneous feature representations, the performance of classifiers trained on images may be dramatically degraded for video recognition tasks. In this paper, we propose a novel method, called Hierarchical Generative Adversarial Networks (HiGAN), to enhance recognition in videos (i.e., target domain) by transferring knowledge from images (i.e., source domain). The HiGAN model consists of a low-level conditional GAN and a high-level conditional GAN. By taking advantage of these two-level adversarial learning, our method is capable of learning a domain-invariant feature representation of source images and target videos. Comprehensive experiments on two challenging video recognition datasets (i.e. UCF101 and HMDB51) demonstrate the effectiveness of the proposed method when compared with the existing state-of-the-art domain adaptation methods.

Original languageEnglish
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1107-1113
Number of pages7
ISBN (Electronic)9780999241127
DOIs
Publication statusPublished - 2018
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: 13 Jul 201819 Jul 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Conference

Conference27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Country/TerritorySweden
CityStockholm
Period13/07/1819/07/18

Fingerprint

Dive into the research topics of 'Exploiting images for video recognition with hierarchical generative adversarial networks'. Together they form a unique fingerprint.

Cite this