Experimental validation of flexible multi body dynamics beam formulations

Olivier A. Bauchau*, Shilei Han, Aki Mikkola, Marko K. Matikainen, Johannes Gerstmayr

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

In this paper, the accuracy of the geometrically exact beam formulation and absolute nodal coordinate formulation are studied by comparing their predictions against experimental data referred to as the "Princeton beam experiment." The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics are described using two nodes. The second is based on a recently proposed approach in which three nodes are used. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similarly to linear theory. This study suggests that the latest developments of the absolute nodal coordinate formulation must be used to ensure accuracy under complicated loading conditions involving by twist deformation.

Original languageEnglish
Title of host publication9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791855973
DOIs
Publication statusPublished - 2013
Externally publishedYes
EventASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013 - Portland, OR, United States
Duration: 4 Aug 20137 Aug 2013

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume7 B

Conference

ConferenceASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Country/TerritoryUnited States
CityPortland, OR
Period4/08/137/08/13

Fingerprint

Dive into the research topics of 'Experimental validation of flexible multi body dynamics beam formulations'. Together they form a unique fingerprint.

Cite this