Abstract
Fretting fatigue is one of the typical failure forms of engine block. The aim of this study is to investigate the fretting fatigue mechanism of the V type engine and guide engine design. An experiential system was developed to simulate fretting fatigue failure under typical engine working condition. And a submodel was used in the finite element calculation to analyze contact status and stress distribution of the structural model. Through the fretting fatigue experimental observations and finite element analysis, it can be concluded that the additional rotate torque caused by bearing load and the bolt pretension load are the two main factors which affect the fretting fatigue mechanism of the V type engine. Appropriate increasing of the bolt pretension load and using extended skirt block with cross-bolted main bearings design will restrain the oscillation of the main bearing cap can be beneficial to fretting fatigue lives of the engine block.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 2014 |
Event | ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada Duration: 14 Nov 2014 → 20 Nov 2014 |
Conference
Conference | ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 14/11/14 → 20/11/14 |