TY - JOUR
T1 - Every individual makes a difference
T2 - A trinity derived from linking individual brain morphometry, connectivity and mentalising ability
AU - Li, Zhaoning
AU - Dong, Qunxi
AU - Hu, Bin
AU - Wu, Haiyan
N1 - Publisher Copyright:
© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
PY - 2023/6/1
Y1 - 2023/6/1
N2 - Mentalising ability, indexed as the ability to understand others' beliefs, feelings, intentions, thoughts and traits, is a pivotal and fundamental component of human social cognition. However, considering the multifaceted nature of mentalising ability, little research has focused on characterising individual differences in different mentalising components. And even less research has been devoted to investigating how the variance in the structural and functional patterns of the amygdala and hippocampus, two vital subcortical regions of the “social brain”, are related to inter-individual variability in mentalising ability. Here, as a first step toward filling these gaps, we exploited inter-subject representational similarity analysis (IS-RSA) to assess relationships between amygdala and hippocampal morphometry (surface-based multivariate morphometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC) and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across the participants ((Formula presented.)). In IS-RSA, we proposed a novel pipeline, that is, computing patching and pooling operations-based surface distance (CPP-SD), to obtain a decent representation for high-dimensional MMS data. On this basis, we found significant correlations (i.e., second-order isomorphisms) between these three distinct modalities, indicating that a trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. Notably, a region-related mentalising specificity emerged from these associations: self-self and self-other mentalisation are more related to the hippocampus, while other-self mentalisation shows a closer link with the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed significant interactions such that subject pairs with similar morphometry had even greater mentalising similarity if they were also similar in rs-FC. Altogether, we demonstrated the feasibility and illustrated the promise of using IS-RSA to study individual differences, deepening our understanding of how individual brains give rise to their mentalising abilities.
AB - Mentalising ability, indexed as the ability to understand others' beliefs, feelings, intentions, thoughts and traits, is a pivotal and fundamental component of human social cognition. However, considering the multifaceted nature of mentalising ability, little research has focused on characterising individual differences in different mentalising components. And even less research has been devoted to investigating how the variance in the structural and functional patterns of the amygdala and hippocampus, two vital subcortical regions of the “social brain”, are related to inter-individual variability in mentalising ability. Here, as a first step toward filling these gaps, we exploited inter-subject representational similarity analysis (IS-RSA) to assess relationships between amygdala and hippocampal morphometry (surface-based multivariate morphometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC) and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across the participants ((Formula presented.)). In IS-RSA, we proposed a novel pipeline, that is, computing patching and pooling operations-based surface distance (CPP-SD), to obtain a decent representation for high-dimensional MMS data. On this basis, we found significant correlations (i.e., second-order isomorphisms) between these three distinct modalities, indicating that a trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. Notably, a region-related mentalising specificity emerged from these associations: self-self and self-other mentalisation are more related to the hippocampus, while other-self mentalisation shows a closer link with the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed significant interactions such that subject pairs with similar morphometry had even greater mentalising similarity if they were also similar in rs-FC. Altogether, we demonstrated the feasibility and illustrated the promise of using IS-RSA to study individual differences, deepening our understanding of how individual brains give rise to their mentalising abilities.
KW - dyadic regression analysis
KW - inter-subject representational similarity analysis
KW - interactive mentalisation questionnaire
KW - mentalising
KW - resting-state functional connectivity
KW - surface-based multivariate morphometry statistics
UR - http://www.scopus.com/inward/record.url?scp=85152791758&partnerID=8YFLogxK
U2 - 10.1002/hbm.26285
DO - 10.1002/hbm.26285
M3 - Article
C2 - 37051692
AN - SCOPUS:85152791758
SN - 1065-9471
VL - 44
SP - 3343
EP - 3358
JO - Human Brain Mapping
JF - Human Brain Mapping
IS - 8
ER -