TY - JOUR
T1 - Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan
AU - Khahro, Shahnawaz Farhan
AU - Tabbassum, Kavita
AU - Soomro, Amir Mahmood
AU - Dong, Lei
AU - Liao, Xiaozhong
PY - 2014/2
Y1 - 2014/2
N2 - Pakistan is currently experiencing an acute shortage of energy and urgently needs new sources of affordable energy that could alleviate the misery of the energy starved masses. At present the government is increasing not only the conventional energy sources like hydel and thermal but also focusing on the immense potential of renewable energy sources like; solar, wind, biogas, waste-to-energy etc. The recent economic crisis worldwide, global warming and climate change have also emphasized the need for utilizing economic feasible energy sources having lowest carbon emissions. Wind energy, with its sustainability and low environmental impact, is highly prominent. The aim of this paper is to explore the wind power production prospective of one of the sites in south region of Pakistan. It is worth mentioning here that this type of detailed analysis is hardly done for any location in Pakistan. Wind power densities and frequency distributions of wind speed at four different altitudes along with estimated wind power expected to be generated through commercial wind turbines is calculated. Analysis and comparison of 5 numerical methods is presented in this paper to determine the Weibull scale and shape parameters for the available wind data. The yearly mean wind speed of the considered site is 6.712 m/s and has power density of 310 W/m2 at 80 m height with high power density during April to August (highest in May with wind speed 9.595 m/s and power density 732 W/m2). Economic evaluation, to exemplify feasibility of installing wind turbines, is also done. The estimated cost of per kWh of electricity from wind is calculated as 0.0263 US$/kWh. Thus the candidate site is recommended for some small stand-alone systems as well as for wind farm.
AB - Pakistan is currently experiencing an acute shortage of energy and urgently needs new sources of affordable energy that could alleviate the misery of the energy starved masses. At present the government is increasing not only the conventional energy sources like hydel and thermal but also focusing on the immense potential of renewable energy sources like; solar, wind, biogas, waste-to-energy etc. The recent economic crisis worldwide, global warming and climate change have also emphasized the need for utilizing economic feasible energy sources having lowest carbon emissions. Wind energy, with its sustainability and low environmental impact, is highly prominent. The aim of this paper is to explore the wind power production prospective of one of the sites in south region of Pakistan. It is worth mentioning here that this type of detailed analysis is hardly done for any location in Pakistan. Wind power densities and frequency distributions of wind speed at four different altitudes along with estimated wind power expected to be generated through commercial wind turbines is calculated. Analysis and comparison of 5 numerical methods is presented in this paper to determine the Weibull scale and shape parameters for the available wind data. The yearly mean wind speed of the considered site is 6.712 m/s and has power density of 310 W/m2 at 80 m height with high power density during April to August (highest in May with wind speed 9.595 m/s and power density 732 W/m2). Economic evaluation, to exemplify feasibility of installing wind turbines, is also done. The estimated cost of per kWh of electricity from wind is calculated as 0.0263 US$/kWh. Thus the candidate site is recommended for some small stand-alone systems as well as for wind farm.
KW - Frequency distribution
KW - Power density function
KW - Weibull distribution
KW - Wind energy
KW - Wind rose
UR - http://www.scopus.com/inward/record.url?scp=84892965166&partnerID=8YFLogxK
U2 - 10.1016/j.enconman.2013.06.062
DO - 10.1016/j.enconman.2013.06.062
M3 - Article
AN - SCOPUS:84892965166
SN - 0196-8904
VL - 78
SP - 956
EP - 967
JO - Energy Conversion and Management
JF - Energy Conversion and Management
ER -