TY - JOUR
T1 - Evaluation and validation of viscous oil cavitation model used in torque converter
AU - Guo, Meng
AU - Liu, Cheng
AU - Yan, Qingdong
AU - Ke, Zhifang
AU - Wei, Wei
AU - Li, Juan
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/4/2
Y1 - 2021/4/2
N2 - Hydraulic torque converter is widely used in transmission units as it is able to provide variable speed and torque ratio, isolate vibration, and absorb shock. The pursuit of a highly packed power unit requires a high capacity/speed torque converter, consequently resulting in a higher risk for cavitation and severe performance degradation, noise, vibration, and even failure. Exist-ing cavitation models generally focus on water, and the empirical parameters are not suitable for the cavitation prediction of torque converter which utilizes high viscosity oil as its working medium. This paper focused on the influence of parameters on the performance and cavitation characteristics of torque converter. A full flow passage geometry and different computational fluid dynamics (CFD) models with cavitation were developed to predict torque converter fluid behavior by resolving Reynolds-averaged Navier–Stokes equations using finite volume method (FVM). The numerical results indicated that nuclei volume fraction, vaporization coefficient, mean nucleation site radius, and maximum density ratio have great influences on the cavitation behavior. These parameters altered the degree of cavitation and the pressure distribution on the surface of stator blades, and affected the stall performance such as stall capacity factor and torque ratio. The cavitation model was then modified to improve calculation accuracy. The test results showed that the prediction error under stall operating condition was decreased from 6.7% to 2%. This study provides insight on the influences of the empirical parameters on both internal cavitation behavior as well as overall hydrodynamic performance.
AB - Hydraulic torque converter is widely used in transmission units as it is able to provide variable speed and torque ratio, isolate vibration, and absorb shock. The pursuit of a highly packed power unit requires a high capacity/speed torque converter, consequently resulting in a higher risk for cavitation and severe performance degradation, noise, vibration, and even failure. Exist-ing cavitation models generally focus on water, and the empirical parameters are not suitable for the cavitation prediction of torque converter which utilizes high viscosity oil as its working medium. This paper focused on the influence of parameters on the performance and cavitation characteristics of torque converter. A full flow passage geometry and different computational fluid dynamics (CFD) models with cavitation were developed to predict torque converter fluid behavior by resolving Reynolds-averaged Navier–Stokes equations using finite volume method (FVM). The numerical results indicated that nuclei volume fraction, vaporization coefficient, mean nucleation site radius, and maximum density ratio have great influences on the cavitation behavior. These parameters altered the degree of cavitation and the pressure distribution on the surface of stator blades, and affected the stall performance such as stall capacity factor and torque ratio. The cavitation model was then modified to improve calculation accuracy. The test results showed that the prediction error under stall operating condition was decreased from 6.7% to 2%. This study provides insight on the influences of the empirical parameters on both internal cavitation behavior as well as overall hydrodynamic performance.
KW - CFD
KW - Cavitation parameter
KW - Cavitation vaporization coefficient
KW - Nuclei volume fraction
KW - Torque converter
UR - http://www.scopus.com/inward/record.url?scp=85104935120&partnerID=8YFLogxK
U2 - 10.3390/app11083643
DO - 10.3390/app11083643
M3 - Article
AN - SCOPUS:85104935120
SN - 2076-3417
VL - 11
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 8
M1 - 3643
ER -