Ensemble of surrogates and cross-validation for rapid and accurate predictions using small data sets

Pradipta Biswas, Liangyue Jia, Anand Balu Nellippallil, Guoxin Wang*, Jia Hao, Janet K. Allen, Farrokh Mistree

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

In engineering design, surrogate models are often used instead of costly computer simulations. Typically, a single surrogate model is selected based on the previous experience. We observe, based on an analysis of the published literature, that fitting an ensemble of surrogates (EoS) based on cross-validation errors is more accurate but requires more computational time. In this paper, we propose a method to build an EoS that is both accurate and less computationally expensive. In the proposed method, the EoS is a weighted average surrogate of response surface models, kriging, and radial basis functions based on overall cross-validation error. We demonstrate that created EoS is accurate than individual surrogates even when fewer data points are used, so computationally efficient with relatively insensitive predictions. We demonstrate the use of an EoS using hot rod rolling as an example. Finally, we include a rule-based template which can be used for other problems with similar requirements, for example, the computational time, required accuracy, and the size of the data.

Original languageEnglish
Pages (from-to)484-501
Number of pages18
JournalArtificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM
Volume33
Issue number4
DOIs
Publication statusPublished - 2019

Keywords

  • Ensemble of surrogates
  • kriging
  • response surface modeling
  • small data sets
  • surrogate models

Fingerprint

Dive into the research topics of 'Ensemble of surrogates and cross-validation for rapid and accurate predictions using small data sets'. Together they form a unique fingerprint.

Cite this