TY - JOUR
T1 - Enhancing the EEG classification in RSVP task by combining interval model of ERPs with spatial and temporal regions of interest
AU - Li, Bowen
AU - Lin, Yanfei
AU - Gao, Xiaorong
AU - Liu, Zhiwen
N1 - Publisher Copyright:
© 2021 IOP Publishing Ltd.
PY - 2021/2
Y1 - 2021/2
N2 - Objective. Brain-computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images. There are still two main challenges in electroencephalography (EEG) classification for RSVP tasks: inter-trial variability of event-related potentials (ERPs) and limited trial number of EEG training data. Approach. This study proposed an algorithm of discriminant analysis and classification for interval ERPs (DACIE) in RSVP tasks. Firstly, an interval model of ERPs was exploited to solve the inter-trial variability problem. Secondly, a spatial structured sparsity regularization was utilized to reinforce the important channels, which provided a spatial region of interest (sROI). Meanwhile, a temporal auto-weighting technique was conducted to emphasize the important discriminant components, which obtained a temporal regions of interest (tROIs). Thirdly, classification features were obtained by the discriminant eigenvalue analysis to avoid the ill-conditioned estimation of covariance matrix caused by fewer training trials. Main results. EEG datasets of 12 subjects in RSVP tasks were analyzed to evaluate the classification performance of proposed algorithm. The average accuracy rate, true positive rate, false positive rate and AUC value are 96.9%, 81.6%, 2.8% and 0.938, respectively. Compared with several state-of-the-art algorithms, the proposed algorithm can provide significantly better classification performance. Significance. The interval model of ERPs was exploited in a spatial linear discriminant framework to overcome the inter-trial variability. The sROIs and tROIs were explored to reinforce the pivotal channels and temporal components. And the proposed algorithm can provide good performance with fewer training trials.
AB - Objective. Brain-computer interface (BCI) systemsdirectly translate human intentions to instructions for machines by decoding the neural signals. The rapid serial visual presentation (RSVP) task is a typical paradigm of BCIs, in which subjects can detect the targets in the high-speed serial images. There are still two main challenges in electroencephalography (EEG) classification for RSVP tasks: inter-trial variability of event-related potentials (ERPs) and limited trial number of EEG training data. Approach. This study proposed an algorithm of discriminant analysis and classification for interval ERPs (DACIE) in RSVP tasks. Firstly, an interval model of ERPs was exploited to solve the inter-trial variability problem. Secondly, a spatial structured sparsity regularization was utilized to reinforce the important channels, which provided a spatial region of interest (sROI). Meanwhile, a temporal auto-weighting technique was conducted to emphasize the important discriminant components, which obtained a temporal regions of interest (tROIs). Thirdly, classification features were obtained by the discriminant eigenvalue analysis to avoid the ill-conditioned estimation of covariance matrix caused by fewer training trials. Main results. EEG datasets of 12 subjects in RSVP tasks were analyzed to evaluate the classification performance of proposed algorithm. The average accuracy rate, true positive rate, false positive rate and AUC value are 96.9%, 81.6%, 2.8% and 0.938, respectively. Compared with several state-of-the-art algorithms, the proposed algorithm can provide significantly better classification performance. Significance. The interval model of ERPs was exploited in a spatial linear discriminant framework to overcome the inter-trial variability. The sROIs and tROIs were explored to reinforce the pivotal channels and temporal components. And the proposed algorithm can provide good performance with fewer training trials.
KW - BCI
KW - RSVP
KW - interval model of ERPs
KW - spatial projection
KW - temporal auto-weighting
UR - http://www.scopus.com/inward/record.url?scp=85102942219&partnerID=8YFLogxK
U2 - 10.1088/1741-2552/abc8d5
DO - 10.1088/1741-2552/abc8d5
M3 - Article
C2 - 33166945
AN - SCOPUS:85102942219
SN - 1741-2560
VL - 18
JO - Journal of Neural Engineering
JF - Journal of Neural Engineering
IS - 1
M1 - 016008
ER -