TY - GEN
T1 - Energy Management Strategy for Unmanned Tracked Vehicles Based on Local Speed Planning
AU - Sun, Tianxing
AU - Xu, Shaohang
AU - Li, Zirui
AU - Tan, Yingqi
AU - Chen, Huiyan
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/9/19
Y1 - 2021/9/19
N2 - The hybrid electric system has good potential for unmanned tracked vehicles due to its excellent power and economy. Due to unmanned tracked vehicles have no traditional driving devices, and the driving cycle is uncertain, it brings new challenges to conventional energy management strategies. This paper proposes a novel energy management strategy for unmanned tracked vehicles based on local speed planning. The contributions are threefold. Firstly, a local speed planning algorithm is adopted for the input of driving cycle prediction to avoid the dependence of traditional vehicles on driver's operation. Secondly, a prediction model based on Convolutional Neural Networks and Long Short-Term Memory (CNN-LSTM) is proposed, which is used to process both the planned and the historical velocity series to improve the prediction accuracy. Finally, based on the prediction results, the model predictive control algorithm is used to realize the real-time optimization of energy management. The validity of the method is verified by simulation using collected data from actual field experiments of our unmanned tracked vehicle. Compared with multi-step neural networks, the prediction model based on CNN-LSTM improves the prediction accuracy by 20%. Compared with the traditional regular energy management strategy, the energy management strategy based on model predictive control reduces fuel consumption by 7%.
AB - The hybrid electric system has good potential for unmanned tracked vehicles due to its excellent power and economy. Due to unmanned tracked vehicles have no traditional driving devices, and the driving cycle is uncertain, it brings new challenges to conventional energy management strategies. This paper proposes a novel energy management strategy for unmanned tracked vehicles based on local speed planning. The contributions are threefold. Firstly, a local speed planning algorithm is adopted for the input of driving cycle prediction to avoid the dependence of traditional vehicles on driver's operation. Secondly, a prediction model based on Convolutional Neural Networks and Long Short-Term Memory (CNN-LSTM) is proposed, which is used to process both the planned and the historical velocity series to improve the prediction accuracy. Finally, based on the prediction results, the model predictive control algorithm is used to realize the real-time optimization of energy management. The validity of the method is verified by simulation using collected data from actual field experiments of our unmanned tracked vehicle. Compared with multi-step neural networks, the prediction model based on CNN-LSTM improves the prediction accuracy by 20%. Compared with the traditional regular energy management strategy, the energy management strategy based on model predictive control reduces fuel consumption by 7%.
UR - http://www.scopus.com/inward/record.url?scp=85118455802&partnerID=8YFLogxK
U2 - 10.1109/ITSC48978.2021.9564598
DO - 10.1109/ITSC48978.2021.9564598
M3 - Conference contribution
AN - SCOPUS:85118455802
T3 - IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
SP - 15
EP - 21
BT - 2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
Y2 - 19 September 2021 through 22 September 2021
ER -