Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss

Qiaoshi An, Wei Gao, Fujun Zhang*, Jian Wang, Miao Zhang, Kailong Wu, Xiaoling Ma, Zhenghao Hu, Chaoqun Jiao, Chuluo Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

145 Citations (Scopus)

Abstract

Two new non-fullerene (NF) acceptors, namely BDTIT-M and BDTThIT-M, were rationally designed to optimize the energy levels and optical bandgap. BDTIT-M is derived by changing the end-group of NFBDT into slightly weak DCI-M, and BDTThIT-M is obtained by adding two conjugated thiophene side-chains into a ladder-type core of BDTIT-M. By incorporating with the polymer donor PBDB-T, BDTIT-M based organic solar cells (OSCs) deliver a higher PCE of 11.31% compared to that of NFBDT based cells, which is mainly attributed to the increased VOC and FF. A higher PCE of 12.12% with a small energy loss of ∼0.588 eV is achieved compared with BDTThIT-M based OSCs, benefiting from the elevated LUMO level, narrowed bandgap, and enhanced absorption coefficient and electron mobility of BDTThIT-M compared with BDTIT-M. The combination of a methyl-modified end-group and conjugated side-chain should be an efficient strategy to elevate the LUMO and HOMO levels with different amplitudes for realizing simultaneous improvement in VOC and JSC.

Original languageEnglish
Pages (from-to)2468-2475
Number of pages8
JournalJournal of Materials Chemistry A
Volume6
Issue number6
DOIs
Publication statusPublished - 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss'. Together they form a unique fingerprint.

Cite this