Abstract
Using air source heat pump system for residential heating is a practical way to replace coal-fired boiler in China to alleviate the haze problem, and CO2 is a promising candidate to replace hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFCs) charged into the system. A mathematical model is developed to comprehensively evaluate the energetic, economical and environmental performances of CO2 heat pump system compared with other three traditional heating methods. The results indicate that the primary energy ratio of CO2 heat pump is the highest and it is a rational way to utilize renewable energy with the renewable energy contribution ratio of 0.60–0.69. The initial capital cost of CO2 heat pump is much higher due to the dominant compressor cost. The emission of CO2 heat pump is lower than that of coal-fired boiler at seasonal performance factor above 2.44. The initial and operation cost can be gradually reduced with the mass production and energy efficiency improvement of CO2 heat pump. It is believe that air source CO2 heat pump system can be employed for home heating in China, especial for the hot summer and cold winter region.
Original language | English |
---|---|
Pages (from-to) | 1425-1439 |
Number of pages | 15 |
Journal | Applied Thermal Engineering |
Volume | 148 |
DOIs | |
Publication status | Published - 5 Feb 2019 |
Externally published | Yes |
Keywords
- Carbon dioxide
- China
- Heat pump
- Residential heating
- Techno-economic analysis