Electrically Modulated Nanofiltration Membrane Based on an Arch-Bridged Graphene Structure for Multicomponent Molecular Separation

Tiantian Gao*, Yeye Wen, Chun Li, Huhu Cheng, Xiao Rui Jin, Xinyu Ai, Yongan Yang, Kai Ge Zhou*, Liangti Qu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Tunable regulation of molecular penetration through porous membranes is highly desirable for membrane applications in the pharmaceutical and medical fields. However, in most previous reports additional reagents or components are usually needed to provide the graphene-based membranes with responsiveness. Herein, we report tunable arch-bridged reduced graphene oxide (rGO) nanofiltration membranes modulated by the applied voltage. Under a finite voltage of 5 V, the rGO membrane could completely reject organic/anionic molecules. With assistance of the voltage, the positive-charge-modified rGO membrane realized the universal rejection of both cationic and anionic dyes, also showing the valid modulation in harsh organic solvents. The efficient electrical modulation depended on the synergetic effects of Donnan repulsion and size exclusion, benefiting from the electric field enhancement in arch-bridged rGO structures. Furthermore, multicomponent separation was achieved by our electrically modulated rGO-based membranes, demonstrating their potential in practical applications such as pharmaceutical industries.

Original languageEnglish
Pages (from-to)6627-6637
Number of pages11
JournalACS Nano
Volume17
Issue number7
DOIs
Publication statusPublished - 11 Apr 2023
Externally publishedYes

Keywords

  • arch-bridged structure
  • electrical modulation
  • molecular sieving
  • nanofiltration
  • reduced graphene oxide

Fingerprint

Dive into the research topics of 'Electrically Modulated Nanofiltration Membrane Based on an Arch-Bridged Graphene Structure for Multicomponent Molecular Separation'. Together they form a unique fingerprint.

Cite this