Efficient Spin-Orbit Torque Switching in a Perpendicularly Magnetized Heusler Alloy MnPtGe Single Layer

Lizhu Ren*, Chenghang Zhou, Xiaohe Song, Herng Tun Seng, Liang Liu, Chaojiang Li, Tieyang Zhao, Zhenyi Zheng, Jun Ding, Yuan Ping Feng, Jingsheng Chen, Kie Leong Teo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnxPtyGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers. The perpendicular magnetization of the MPG single layer can be reversibly switched by electrical current pulses with a magnitude as low as 4.1 × 1010Am-2, as evidenced by both the electrical transport and the magnetic optical measurements. The switching is shown to arise from inversion symmetry breaking due to the vertical composition gradient of the films after sample annealing. The SOT effective fields of the samples are analyzed systematically. It is found that the SOT efficiency increases with the film thickness, suggesting a robust bulk-like behavior in the single magnetic layer. Furthermore, a memristive characteristic has been observed due to a multidomain switching property in the single-layer MPG device. Additionally, deterministic field-free switching of magnetization is observed when the electric current flows orthogonal to the direction of the in-plane compositional gradient due to the in-plane symmetry breaking. This work proves that the MPG is a good candidate to be utilized in high-density and efficient magnetoresistive random access memory devices and other spintronic applications.

Original languageEnglish
Pages (from-to)6400-6409
Number of pages10
JournalACS Nano
Volume17
Issue number7
DOIs
Publication statusPublished - 11 Apr 2023

Keywords

  • Heusler alloy
  • bulk spin−orbit torque
  • current-induced magnetization switching
  • field-free SOT switching
  • magnetic single layer
  • perpendicularly magnetized anisotropy

Fingerprint

Dive into the research topics of 'Efficient Spin-Orbit Torque Switching in a Perpendicularly Magnetized Heusler Alloy MnPtGe Single Layer'. Together they form a unique fingerprint.

Cite this