Efficient Riemannian Meta-Optimization by Implicit Differentiation

Xiaomeng Fan, Yuwei Wu*, Zhi Gao, Yunde Jia, Mehrtash Harandi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

To solve optimization problems with nonlinear constrains, the recently developed Riemannian meta-optimization methods show promise, which train neural networks as an optimizer to perform optimization on Riemannian manifolds. A key challenge is the heavy computational and memory burdens, because computing the meta-gradient with respect to the optimizer involves a series of time-consuming derivatives, and stores large computation graphs in memory. In this paper, we propose an efficient Riemannian meta-optimization method that decouples the complex computation scheme from the meta-gradient. We derive Riemannian implicit differentiation to compute the meta-gradient by establishing a link between Riemannian optimization and the implicit function theorem. As a result, the updating our optimizer is only related to the final two iterations, which in turn speeds up our method and reduces the memory footprint significantly. We theoretically study the computational load and memory footprint of our method for long optimization trajectories, and conduct an empirical study to demonstrate the benefits of the proposed method. Evaluations of three optimization problems on different Riemannian manifolds show that our method achieves state-of-the-art performance in terms of the convergence speed and the quality of optima.

Original languageEnglish
Title of host publicationAAAI-22 Technical Tracks 4
PublisherAssociation for the Advancement of Artificial Intelligence
Pages3733-3740
Number of pages8
ISBN (Electronic)1577358767, 9781577358763
Publication statusPublished - 30 Jun 2022
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: 22 Feb 20221 Mar 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period22/02/221/03/22

Fingerprint

Dive into the research topics of 'Efficient Riemannian Meta-Optimization by Implicit Differentiation'. Together they form a unique fingerprint.

Cite this