Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites

Jie Li, Shuaiheng Zhao, Zhen Li, Dan Liu, Yingnan Chi*, Changwen Hu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Catalytic transformation of levulinic acid (LA) to γ-valerolactone (γ-GVL) is an important route for biomass upgradation. Because both Bro̷nsted and Lewis acidic sites are required in the cascade reaction, herein we fabricate a series of H3PW12O40@Zr-based metal-organic framework (HPW@MOF-808) by a facile impregnation method. The synthesized HPW@MOF-808 is active for the conversion of LA to γ-GVL using isopropanol as a hydrogen donor. Interestingly, with the increase in the HPW loading amount, the yield of γ-GVL increases first and then decreases, and 14%-HPW@MOF-808 gave the highest γ-GVL yield (86%). The excellent catalytic performance was ascribed to the synergistic effect between the accessible Lewis acidic Zr4+ sites in MOF-808 and Bro̷nsted acidic HPW sites. Based on the experimental results, a plausible reaction mechanism was proposed: the Zr4+ sites catalyze the transfer hydrogenation of carbonyl groups and the HPW clusters promote the esterification of LA with isopropanol and lactonization to afford γ-GVL. Moreover, HPW@MOF-808 is resistant to leaching and can be reused for five cycles without significant loss of its catalytic activity.

Original languageEnglish
Pages (from-to)7785-7793
Number of pages9
JournalInorganic Chemistry
Volume60
Issue number11
DOIs
Publication statusPublished - 7 Jun 2021

Fingerprint

Dive into the research topics of 'Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites'. Together they form a unique fingerprint.

Cite this