Efficient Active SLAM Based on Submap Joining, Graph Topology and Convex Optimization

Yongbo Chen, Shoudong Huang, Robert Fitch, Jianqiao Yu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

The active SLAM problem considered in this paper aims to plan a robot trajectory for simultaneous localization and mapping (SLAM) as well as for an area coverage task with robot pose uncertainty. Based on a model predictive control (MPC) framework, these two problems are solved respectively by different methods. For the uncertainty minimization MPC problem, based on the graphical structure of the 2D feature-based SLAM, a non-convex constrained least-squares problem is presented to approximate the original problem. Then, using variable substitutions, it is further transformed into a convex problem, and then solved by a convex optimization method. For the coverage task considering robot pose uncertainty, it is formulated and solved by the MPC framework and the sequential quadratic programming (SQP) method. In the whole process, considering the computation complexity, we use linear SLAM, which is a submap joining approach, to reduce the time for planning and estimation. Finally, various simulations are presented to validate the effectiveness of the proposed approach.

Original languageEnglish
Title of host publication2018 IEEE International Conference on Robotics and Automation, ICRA 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5159-5166
Number of pages8
ISBN (Electronic)9781538630815
DOIs
Publication statusPublished - 10 Sept 2018
Event2018 IEEE International Conference on Robotics and Automation, ICRA 2018 - Brisbane, Australia
Duration: 21 May 201825 May 2018

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Country/TerritoryAustralia
CityBrisbane
Period21/05/1825/05/18

Fingerprint

Dive into the research topics of 'Efficient Active SLAM Based on Submap Joining, Graph Topology and Convex Optimization'. Together they form a unique fingerprint.

Cite this