TY - JOUR
T1 - Effects of Ozone Addition on Multi-Wave Modes of Hydrogen–Air Rotating Detonations
AU - Wang, Yang
AU - Tian, Cheng
AU - Yang, Pengfei
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/5
Y1 - 2023/5
N2 - Ozone addition presents a promising approach for optimizing and regulating both combustion and ignition mechanisms. In Rotating Detonation Engines (RDEs), investigating the impact of ozone addition is particularly important due to the fact of their unique operating conditions and potential for improved efficiency. This study explores the influence of ozone concentration, total temperature, and equivalent ratio on the combustion characteristics of a hydrogen–air mixture infused with ozone. Utilizing the mixture as a propellant, the combustion chamber of a continuous rotating detonation engine is replicated through an array of injection ports, with numerical simulations conducted to analyze the detonation wave combustion mode. Our results show that an increase in total temperature leads to an increase in the number of detonation waves. Incorporating a minor quantity of ozone can facilitate the ignition process for the detonation wave. Increasing the ozone content can result in the conversion from a single-wave to dual-wave or multi-wave mode, providing a more stable combustion interface. A low ozone concentration acts as an auxiliary ignition agent and can significantly shorten the induction time. As the total temperature increases, the detonation propagation velocity and the peak heat release rate both decrease concurrently, which leads to a decline in the exit total pressure and an augmentation in the specific impulse. Employing ozone exerts a minimal impact on the detonation propagation and the overall propulsion performance. The requirement for ozone-assisted initiation differs noticeably between rich and lean combustion.
AB - Ozone addition presents a promising approach for optimizing and regulating both combustion and ignition mechanisms. In Rotating Detonation Engines (RDEs), investigating the impact of ozone addition is particularly important due to the fact of their unique operating conditions and potential for improved efficiency. This study explores the influence of ozone concentration, total temperature, and equivalent ratio on the combustion characteristics of a hydrogen–air mixture infused with ozone. Utilizing the mixture as a propellant, the combustion chamber of a continuous rotating detonation engine is replicated through an array of injection ports, with numerical simulations conducted to analyze the detonation wave combustion mode. Our results show that an increase in total temperature leads to an increase in the number of detonation waves. Incorporating a minor quantity of ozone can facilitate the ignition process for the detonation wave. Increasing the ozone content can result in the conversion from a single-wave to dual-wave or multi-wave mode, providing a more stable combustion interface. A low ozone concentration acts as an auxiliary ignition agent and can significantly shorten the induction time. As the total temperature increases, the detonation propagation velocity and the peak heat release rate both decrease concurrently, which leads to a decline in the exit total pressure and an augmentation in the specific impulse. Employing ozone exerts a minimal impact on the detonation propagation and the overall propulsion performance. The requirement for ozone-assisted initiation differs noticeably between rich and lean combustion.
KW - Rotating Detonation Engine (RDE)
KW - combustion mode
KW - numerical simulation
KW - ozone
UR - http://www.scopus.com/inward/record.url?scp=85160807320&partnerID=8YFLogxK
U2 - 10.3390/aerospace10050443
DO - 10.3390/aerospace10050443
M3 - Article
AN - SCOPUS:85160807320
SN - 2226-4310
VL - 10
JO - Aerospace
JF - Aerospace
IS - 5
M1 - 443
ER -