TY - JOUR
T1 - Effect of solar energy concentrating and phase change cooling on energy and exergy performance improvement of photovoltaic/thermal systems
AU - Kong, Xiangfei
AU - Zhang, Lanlan
AU - Li, Han
AU - Wang, Yongzhen
AU - Fan, Man
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/9
Y1 - 2022/9
N2 - The application of compound parabolic concentrator (CPC) in photovoltaic/thermal (PV/T) system increases the thermal and electrical energy gain, and the phase change material (PCM) helps cool down the operating temperature of cells. In this study, an open-air experiment is constructed to compare the overall performance of conventional flat photovoltaic (FPV), concentrating photovoltaic/thermal (PV/T-CPC) and concentrating photovoltaic/thermal phase change (PV/T-CPCM) system. The maximum PV backplane temperature is 69.9 °C in PV/T-CPC, 59.2 °C in PV/T-CPCM and 36.7 °C in FPV system respectively, and the PV temperature distribution non-uniformity in PV/T-CPC is 1.5 times higher than that in PV/T-CPCM system, showing the application of concentrator enhances the useful thermal energy and meanwhile the PCM effectively improves the local overheating and temperature distribution non-uniformity problem. The average thermal energy and efficiency of PV/T-CPCM are over 2462.0 kJ and 9.0% higher than those of PV/T-CPC system respectively. Besides, the electrical power/total exergy of PV/T-CPCM system are over 1.3/4 and 1.6/2 times of FPV and PV/T-CPC system respectively. Results present that the PV/T-CPCM system owns superior thermal, electrical and exergy performance among the three systems, and the application of CPC and PCM has great advantages in improving the overall performance of the PV/T unit.
AB - The application of compound parabolic concentrator (CPC) in photovoltaic/thermal (PV/T) system increases the thermal and electrical energy gain, and the phase change material (PCM) helps cool down the operating temperature of cells. In this study, an open-air experiment is constructed to compare the overall performance of conventional flat photovoltaic (FPV), concentrating photovoltaic/thermal (PV/T-CPC) and concentrating photovoltaic/thermal phase change (PV/T-CPCM) system. The maximum PV backplane temperature is 69.9 °C in PV/T-CPC, 59.2 °C in PV/T-CPCM and 36.7 °C in FPV system respectively, and the PV temperature distribution non-uniformity in PV/T-CPC is 1.5 times higher than that in PV/T-CPCM system, showing the application of concentrator enhances the useful thermal energy and meanwhile the PCM effectively improves the local overheating and temperature distribution non-uniformity problem. The average thermal energy and efficiency of PV/T-CPCM are over 2462.0 kJ and 9.0% higher than those of PV/T-CPC system respectively. Besides, the electrical power/total exergy of PV/T-CPCM system are over 1.3/4 and 1.6/2 times of FPV and PV/T-CPC system respectively. Results present that the PV/T-CPCM system owns superior thermal, electrical and exergy performance among the three systems, and the application of CPC and PCM has great advantages in improving the overall performance of the PV/T unit.
KW - Concentrator
KW - Energy and exergy performance
KW - Phase change material
KW - Photovoltaic/thermal system
UR - http://www.scopus.com/inward/record.url?scp=85135502709&partnerID=8YFLogxK
U2 - 10.1016/j.renene.2022.07.074
DO - 10.1016/j.renene.2022.07.074
M3 - Article
AN - SCOPUS:85135502709
SN - 0960-1481
VL - 197
SP - 1251
EP - 1263
JO - Renewable Energy
JF - Renewable Energy
ER -