EEG Based Depression Recognition by Employing Static and Dynamic Network Metrics

Shuting Sun, Chang Yan, Juntong Lyu, Yueran Xin, Jieyuan Zheng, Zhaolong Yu, Bin Hu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Neural circuit dysfunction underlies the biological mechanisms of major depressive disorder (MDD). However, little is known about how the brain's dynamic connectomes differentiate between depressed patients and normal controls. As a result, we collected resting-state Electroencephalography from 16 MDD patients and 16 controls using 128-electrode geodesic sensor net. Static and dynamic network metrics were later applied to explore the abnormal topological structure of MDD patients and identify them from normal controls using traditional machine learning algorithms with feature selection methods. Results showed that the MDD tend to have a more randomized formation both in static and dynamic network. We also found that the combined static-dynamic feature set usually outperformed others with a highest accuracy of 79.25% under delta band. Lower frequency band (delta, theta) showed relatively better outcomes compared to higher frequency band (alpha, beta). It also indicate the role of functional segregation features as a potential biomarker for depression. In conclusion, neuropathological mechanism of depression may be more objectively quantified and evaluated from the perspective of combining static and dynamic network.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
EditorsDonald Adjeroh, Qi Long, Xinghua Shi, Fei Guo, Xiaohua Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda M. Mondal, Jin Liu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1740-1744
Number of pages5
ISBN (Electronic)9781665468190
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 - Las Vegas, United States
Duration: 6 Dec 20228 Dec 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022

Conference

Conference2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
Country/TerritoryUnited States
CityLas Vegas
Period6/12/228/12/22

Keywords

  • classification
  • dynamic network metrics
  • electroencephalography
  • major depressive disorder
  • static network metrics

Fingerprint

Dive into the research topics of 'EEG Based Depression Recognition by Employing Static and Dynamic Network Metrics'. Together they form a unique fingerprint.

Cite this