EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers

Shuting Sun, Huayu Chen, Xuexiao Shao, Liangliang Liu, Xiaowei Li*, Bin Hu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

23 Citations (Scopus)

Abstract

This Electroencephalography (EEG)-based research is to explore the effective biomarkers for depression recognition. Resting-state EEG data were collected from 24 major depressive patients (MDD) and 29 normal controls using 128-electrode geodesic sensor net. To better identify depression, we extracted multi-type of EEG features including linear features (L), nonlinear features (NL), functional connectivity features phase lagging index (PLI) and network measures (NM) to comprehensively characterize the EEG signals in patients with MDD. And machine learning algorithms and statistical analysis were used to evaluate the EEG features. Combined multi-types features (All: L+ NL + PLI + NM) outperformed single-type features for classifying depression. Analyzing the optimal features set we found that compared to other type features, PLI occupied the largest proportion of which functional connections in intra-hemisphere were much more than that of in inter-hemisphere. In addition, when using PLI features and All features, high frequency bands (alpha, beta) could achieve obviously higher classification accuracy than low frequency bands (delta, theta). Parietal-occipital lobe in the high frequency bands had great effect in depression identification. In conclusion, combined multi-types EEG features along with a robust classifier can better distinguish depressive patients from normal controls. And intra-hemispheric functional connections might be an effective biomarker to detect depression. Hence, this paper may provide objective and potential electrophysiological characteristics in depression recognition.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
EditorsTaesung Park, Young-Rae Cho, Xiaohua Tony Hu, Illhoi Yoo, Hyun Goo Woo, Jianxin Wang, Julio Facelli, Seungyoon Nam, Mingon Kang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2074-2081
Number of pages8
ISBN (Electronic)9781728162157
DOIs
Publication statusPublished - 16 Dec 2020
Externally publishedYes
Event2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 - Virtual, Seoul, Korea, Republic of
Duration: 16 Dec 202019 Dec 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020

Conference

Conference2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
Country/TerritoryKorea, Republic of
CityVirtual, Seoul
Period16/12/2019/12/20

Keywords

  • Biomarker
  • Depression recognition
  • EEG
  • Functional brain network

Fingerprint

Dive into the research topics of 'EEG Based Depression Recognition by Combining Functional Brain Network and Traditional Biomarkers'. Together they form a unique fingerprint.

Cite this