EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism

Xiaowei Zhang, Junlei Li, Kechen Hou, Bin Hu, Jian Shen, Jing Pan, Bin Hue

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

29 Citations (Scopus)

Abstract

Electroencephalography (EEG)-based depression detection has become a hot topic in the development of biomedical engineering. However, the complexity and nonstationarity of EEG signals are two biggest obstacles to this application. In addition, the generalization of detection algorithms may be degraded owing to the influences brought by individual differences. In view of the correlation between EEG signals and individual demographics, such as gender, age, etc., and influences of these demographic factors on the incidence of depression, it would be better to incorporate demographic factors during EEG modeling and depression detection. In this work, we constructed an one-dimensional Convolutional Neural Network (1-D CNN) to obtain more effective features of EEG signals, then integrated gender and age factors into the 1-D CNN via an attention mechanism, which could prompt our 1-D CNN to explore complex correlations between EEG signals and demographic factors, and generate more effective high-level representations ultimately for the detection of depression. Experimental results on 170 (81 depressed patients and 89 normal controls) subjects showed that the proposed method is superior to the unitary 1-D CNN without gender and age factors and two other ways of incorporating demographics. This work also indicates that organic mixture of EEG signals and demographic factors is promising for the detection of depression.Clinical relevance-This work indicates that organically mixture of EEG signals and demographic factors is promising for the detection of depression.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages128-133
Number of pages6
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - Jul 2020
Externally publishedYes
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 20 Jul 202024 Jul 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/07/2024/07/20

Fingerprint

Dive into the research topics of 'EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism'. Together they form a unique fingerprint.

Cite this