TY - GEN
T1 - EEG-based Depression Detection Using Convolutional Neural Network with Demographic Attention Mechanism
AU - Zhang, Xiaowei
AU - Li, Junlei
AU - Hou, Kechen
AU - Hu, Bin
AU - Shen, Jian
AU - Pan, Jing
AU - Hue, Bin
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - Electroencephalography (EEG)-based depression detection has become a hot topic in the development of biomedical engineering. However, the complexity and nonstationarity of EEG signals are two biggest obstacles to this application. In addition, the generalization of detection algorithms may be degraded owing to the influences brought by individual differences. In view of the correlation between EEG signals and individual demographics, such as gender, age, etc., and influences of these demographic factors on the incidence of depression, it would be better to incorporate demographic factors during EEG modeling and depression detection. In this work, we constructed an one-dimensional Convolutional Neural Network (1-D CNN) to obtain more effective features of EEG signals, then integrated gender and age factors into the 1-D CNN via an attention mechanism, which could prompt our 1-D CNN to explore complex correlations between EEG signals and demographic factors, and generate more effective high-level representations ultimately for the detection of depression. Experimental results on 170 (81 depressed patients and 89 normal controls) subjects showed that the proposed method is superior to the unitary 1-D CNN without gender and age factors and two other ways of incorporating demographics. This work also indicates that organic mixture of EEG signals and demographic factors is promising for the detection of depression.Clinical relevance-This work indicates that organically mixture of EEG signals and demographic factors is promising for the detection of depression.
AB - Electroencephalography (EEG)-based depression detection has become a hot topic in the development of biomedical engineering. However, the complexity and nonstationarity of EEG signals are two biggest obstacles to this application. In addition, the generalization of detection algorithms may be degraded owing to the influences brought by individual differences. In view of the correlation between EEG signals and individual demographics, such as gender, age, etc., and influences of these demographic factors on the incidence of depression, it would be better to incorporate demographic factors during EEG modeling and depression detection. In this work, we constructed an one-dimensional Convolutional Neural Network (1-D CNN) to obtain more effective features of EEG signals, then integrated gender and age factors into the 1-D CNN via an attention mechanism, which could prompt our 1-D CNN to explore complex correlations between EEG signals and demographic factors, and generate more effective high-level representations ultimately for the detection of depression. Experimental results on 170 (81 depressed patients and 89 normal controls) subjects showed that the proposed method is superior to the unitary 1-D CNN without gender and age factors and two other ways of incorporating demographics. This work also indicates that organic mixture of EEG signals and demographic factors is promising for the detection of depression.Clinical relevance-This work indicates that organically mixture of EEG signals and demographic factors is promising for the detection of depression.
UR - http://www.scopus.com/inward/record.url?scp=85091014297&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9175956
DO - 10.1109/EMBC44109.2020.9175956
M3 - Conference contribution
AN - SCOPUS:85091014297
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 128
EP - 133
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -