TY - GEN
T1 - Dynamic tensile deformation and fracture of a highly particle-filled composite using SHPB and high-speed DIC method
AU - Zhou, Z.
AU - Chen, P.
AU - Guo, B.
AU - Huang, F.
PY - 2012
Y1 - 2012
N2 - In this work, various tensile tests, including Brazilian disc test (BDT), flattened Brazilian disc (FBD) test and semicircular bending (SCB) test, were carried out on a highly particle-filled composite by using a split Hopkinson pressure bar (SHPB). With the consideration of low strength and low wave impedance of the materials, a quartz crystal transducer was embedded in SHPB to measure the loading forces. A high-speed camera was used to capture the deformation and fracture process of materials. Digital image correlation (DIC) method was used to process these digital images to obtain the dynamic deformation information. Based on the measured strain fields, the crack growth path was determined and the failure mechanism of samples was analyzed. Combining SHPB and DIC method, the indirect tensile stress strain plots of disc samples were obtained, and the dynamic fracture toughness of materials was measured using both FBD and SCB tests. The results show that the tensile failure strength and fracture toughness increases with the increase of strain rates, exhibiting strain rate dependence. The high-speed DIC method combined with SHPB is effective to study the dynamic tensile behaviour of brittle materials with low strengths.
AB - In this work, various tensile tests, including Brazilian disc test (BDT), flattened Brazilian disc (FBD) test and semicircular bending (SCB) test, were carried out on a highly particle-filled composite by using a split Hopkinson pressure bar (SHPB). With the consideration of low strength and low wave impedance of the materials, a quartz crystal transducer was embedded in SHPB to measure the loading forces. A high-speed camera was used to capture the deformation and fracture process of materials. Digital image correlation (DIC) method was used to process these digital images to obtain the dynamic deformation information. Based on the measured strain fields, the crack growth path was determined and the failure mechanism of samples was analyzed. Combining SHPB and DIC method, the indirect tensile stress strain plots of disc samples were obtained, and the dynamic fracture toughness of materials was measured using both FBD and SCB tests. The results show that the tensile failure strength and fracture toughness increases with the increase of strain rates, exhibiting strain rate dependence. The high-speed DIC method combined with SHPB is effective to study the dynamic tensile behaviour of brittle materials with low strengths.
UR - http://www.scopus.com/inward/record.url?scp=84884396200&partnerID=8YFLogxK
U2 - 10.1051/epjconf/20122601005
DO - 10.1051/epjconf/20122601005
M3 - Conference contribution
AN - SCOPUS:84884396200
SN - 9782759807574
T3 - EPJ Web of Conferences
BT - DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading
T2 - 10th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, DYMAT 2012
Y2 - 2 September 2012 through 7 September 2012
ER -