TY - GEN
T1 - Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading
AU - Wang, Lin
AU - Wang, Yangwei
AU - Xu, Xin
AU - Liu, Chengze
N1 - Publisher Copyright:
© 2015 Owned by the authors, published by EDP Sciences.
PY - 2015/9/7
Y1 - 2015/9/7
N2 - Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha" martensite transformation occurs.
AB - Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha" martensite transformation occurs.
UR - http://www.scopus.com/inward/record.url?scp=84958059347&partnerID=8YFLogxK
U2 - 10.1051/epjconf/20159402026
DO - 10.1051/epjconf/20159402026
M3 - Conference contribution
AN - SCOPUS:84958059347
T3 - EPJ Web of Conferences
BT - DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading
A2 - Cadoni, Ezio
PB - EDP Sciences
T2 - 11th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, DYMAT 2015
Y2 - 7 September 2015 through 11 September 2015
ER -