TY - JOUR
T1 - Dual-Functional Interfacial Layer Enabled by Gating-Shielding Effects for Ultra-Stable Zn Anode
AU - Liu, Mingquan
AU - Wang, Yahui
AU - Li, Yu
AU - Wu, Feng
AU - Li, Huanyu
AU - Li, Ying
AU - Feng, Xin
AU - Long, Bo
AU - Ni, Qiao
AU - Wu, Chuan
AU - Bai, Ying
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Large-scale application of low-cost, high-safety and environment-compatible aqueous Zn metal batteries (ZMBs) is hindered by Zn dendrite failure and side reactions. Herein, highly reversible ZMBs are obtained by addition of trace D-pantothenate calcium additives to engineer a dual-functional interfacial layer, which is enabled by a bioinspired gating effect for excluding competitive free water near Zn surface due to the trapping and immobilization of water by hydroxyl groups, and guiding target Zn2+ transport across interface through carboxyl groups of pantothenate anions, as well as a dynamic electrostatic shielding effect around Zn protuberances from Ca2+ cations to ensure uniform Zn2+ deposition. In consequence, interfacial side reactions are perfectly inhibited owing to reduced water molecules reaching Zn surface, and the uniform and compact deposition of Zn2+ is achieved due to promoted Zn2+ transport and deposition kinetics. The ultra-stable symmetric cells with beyond 9000 h at 0.5 mA cm−2 with 0.5 mAh cm−2 and over 5000 h at 5 mA cm−2 with 1 mAh cm−2, and an average Coulombic efficiency of 99.8% at 1 mA cm−2 with 1 mAh cm−2, are amazingly realized. The regulated-electrolyte demonstrates high compatibility with verified cathodes for stable full cells. This work opens a brand-new pathway to regulate Zn/electrolyte interface to promise reversible ZMBs.
AB - Large-scale application of low-cost, high-safety and environment-compatible aqueous Zn metal batteries (ZMBs) is hindered by Zn dendrite failure and side reactions. Herein, highly reversible ZMBs are obtained by addition of trace D-pantothenate calcium additives to engineer a dual-functional interfacial layer, which is enabled by a bioinspired gating effect for excluding competitive free water near Zn surface due to the trapping and immobilization of water by hydroxyl groups, and guiding target Zn2+ transport across interface through carboxyl groups of pantothenate anions, as well as a dynamic electrostatic shielding effect around Zn protuberances from Ca2+ cations to ensure uniform Zn2+ deposition. In consequence, interfacial side reactions are perfectly inhibited owing to reduced water molecules reaching Zn surface, and the uniform and compact deposition of Zn2+ is achieved due to promoted Zn2+ transport and deposition kinetics. The ultra-stable symmetric cells with beyond 9000 h at 0.5 mA cm−2 with 0.5 mAh cm−2 and over 5000 h at 5 mA cm−2 with 1 mAh cm−2, and an average Coulombic efficiency of 99.8% at 1 mA cm−2 with 1 mAh cm−2, are amazingly realized. The regulated-electrolyte demonstrates high compatibility with verified cathodes for stable full cells. This work opens a brand-new pathway to regulate Zn/electrolyte interface to promise reversible ZMBs.
KW - Zn metal batteries
KW - bioinspired gating effect
KW - dynamical electrostatic shielding
KW - electrolyte additive
KW - ultra-long cycling life
UR - http://www.scopus.com/inward/record.url?scp=85202850199&partnerID=8YFLogxK
U2 - 10.1002/adma.202406145
DO - 10.1002/adma.202406145
M3 - Article
AN - SCOPUS:85202850199
SN - 0935-9648
VL - 36
JO - Advanced Materials
JF - Advanced Materials
IS - 44
M1 - 2406145
ER -