TY - JOUR
T1 - Driving forces of CO2 emissions from the transport, storage and postal sectors
T2 - A pathway to achieving carbon neutrality
AU - Shang, Wen Long
AU - Ling, Yantao
AU - Ochieng, Washington
AU - Yang, Linchuan
AU - Gao, Xing
AU - Ren, Qingzhong
AU - Chen, Yilin
AU - Cao, Mengqiu
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/7/1
Y1 - 2024/7/1
N2 - In tandem with the urbanisation process, China's transport sector is currently experiencing rapid development and was ranked third out of all the industrial sectors in terms of generating CO2 emissions in 2020, which poses a huge challenge to achieving carbon neutrality. Primarily using the energy consumption data from China's transport, storage and postal sectors (TSPS) and input and output data between 2007 and 2020, this study first uses the Tapio decoupling model to evaluate the decoupling effect in the TSPS. Structural decomposition analysis is then applied to explore sectoral linkages and decompose the forces driving CO2 emissions. Additionally, we explore the main determinants of the energy structure effect and final demand in terms of energy consumption and industrial sector demand. Our results show that the target sector experienced a weak decoupling, which implies that the low-carbon transformation of this sector became increasingly apparent. Factor decomposition shows that improvements in energy intensity, energy structure and the production input and output structure have contributed significantly to reducing CO2 emissions, but these gains have been largely offset by final demand, resulting in a net reduction of 27.97 million tons from 2007 to 2020. The increased usage of low carbon forms of energy, such as natural gas, is the key driver behind the emissions reduction effect in terms of the energy structure. However, the higher final demand from the construction sector and the wholesale and retail trades are the main factors that have increased CO2 emissions. By adopting a sectoral and energy structure decomposition perspective, our study can be used to provide guidance to governments seeking to pursue carbon-reduction policies to achieve carbon peak and carbon neutrality, in the TSPS in particular.
AB - In tandem with the urbanisation process, China's transport sector is currently experiencing rapid development and was ranked third out of all the industrial sectors in terms of generating CO2 emissions in 2020, which poses a huge challenge to achieving carbon neutrality. Primarily using the energy consumption data from China's transport, storage and postal sectors (TSPS) and input and output data between 2007 and 2020, this study first uses the Tapio decoupling model to evaluate the decoupling effect in the TSPS. Structural decomposition analysis is then applied to explore sectoral linkages and decompose the forces driving CO2 emissions. Additionally, we explore the main determinants of the energy structure effect and final demand in terms of energy consumption and industrial sector demand. Our results show that the target sector experienced a weak decoupling, which implies that the low-carbon transformation of this sector became increasingly apparent. Factor decomposition shows that improvements in energy intensity, energy structure and the production input and output structure have contributed significantly to reducing CO2 emissions, but these gains have been largely offset by final demand, resulting in a net reduction of 27.97 million tons from 2007 to 2020. The increased usage of low carbon forms of energy, such as natural gas, is the key driver behind the emissions reduction effect in terms of the energy structure. However, the higher final demand from the construction sector and the wholesale and retail trades are the main factors that have increased CO2 emissions. By adopting a sectoral and energy structure decomposition perspective, our study can be used to provide guidance to governments seeking to pursue carbon-reduction policies to achieve carbon peak and carbon neutrality, in the TSPS in particular.
KW - Carbon dioxide emissions
KW - Carbon neutrality
KW - Structural decomposition analysis
KW - Sustainable transport
UR - http://www.scopus.com/inward/record.url?scp=85191164759&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2024.123226
DO - 10.1016/j.apenergy.2024.123226
M3 - Article
AN - SCOPUS:85191164759
SN - 0306-2619
VL - 365
JO - Applied Energy
JF - Applied Energy
M1 - 123226
ER -