TY - JOUR
T1 - DMaOEA-εC
T2 - Decomposition-based many-objective evolutionary algorithm with the ε-constraint framework
AU - Li, Juan
AU - Li, Jie
AU - Pardalos, Panos M.
AU - Yang, Chengwei
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2020/10
Y1 - 2020/10
N2 - Real-world problems which involve the optimization of multiple conflicting objectives are named as multi-objective optimization problems (MOPs). This paper mainly deals with the widespread and especially challenging many-objective optimization problem (MaOP) which is a category of the MOP with more than three objectives. Given the inefficiency of DMOEA-εC which is a state-of-the-art decomposition-based multi-objective evolutionary algorithm with the ε-constraint framework when dealing with MaOPs, a number of strategies are proposed and embedded in DMOEA-εC. To be specific, in order to overcome the ineffectiveness induced by exponential number of upper bound vectors, a two-stage upper bound vectors generation procedure is put forward to generate widely spread upper bound vectors in a high-dimensional space. Besides, a boundary points maintenance mechanism and a distance-based global replacement strategy are presented to remedy the diversity loss of a population. What's more, given the feasibility rule adopted in DMOEA-εC is simple but less effective, a two-side update rule which maintains both feasible and infeasible solutions for each subproblem is proposed to speed the convergence of a population. DMOEA-εC with the above-mentioned strategies, denoted as DMaOEA-εC, is designed for both multi- and many-objective optimization problems in this paper. DMaOEA-εC is compared with five classical and state-of-the-art multi-objective evolutionary algorithms on 29 test instances to exhibit its performance on MOPs. Furthermore, DMaOEA-εC is compared with five state-of-the-art many-objective evolutionary algorithms on 52 test problems to demonstrate its performance when dealing with MaOPs. Experimental studies show that DMaOEA-εC outperforms or performs competitively against several competitors on the majority of MOPs and MaOPs with up to ten objectives.
AB - Real-world problems which involve the optimization of multiple conflicting objectives are named as multi-objective optimization problems (MOPs). This paper mainly deals with the widespread and especially challenging many-objective optimization problem (MaOP) which is a category of the MOP with more than three objectives. Given the inefficiency of DMOEA-εC which is a state-of-the-art decomposition-based multi-objective evolutionary algorithm with the ε-constraint framework when dealing with MaOPs, a number of strategies are proposed and embedded in DMOEA-εC. To be specific, in order to overcome the ineffectiveness induced by exponential number of upper bound vectors, a two-stage upper bound vectors generation procedure is put forward to generate widely spread upper bound vectors in a high-dimensional space. Besides, a boundary points maintenance mechanism and a distance-based global replacement strategy are presented to remedy the diversity loss of a population. What's more, given the feasibility rule adopted in DMOEA-εC is simple but less effective, a two-side update rule which maintains both feasible and infeasible solutions for each subproblem is proposed to speed the convergence of a population. DMOEA-εC with the above-mentioned strategies, denoted as DMaOEA-εC, is designed for both multi- and many-objective optimization problems in this paper. DMaOEA-εC is compared with five classical and state-of-the-art multi-objective evolutionary algorithms on 29 test instances to exhibit its performance on MOPs. Furthermore, DMaOEA-εC is compared with five state-of-the-art many-objective evolutionary algorithms on 52 test problems to demonstrate its performance when dealing with MaOPs. Experimental studies show that DMaOEA-εC outperforms or performs competitively against several competitors on the majority of MOPs and MaOPs with up to ten objectives.
KW - Boundary points maintenance
KW - Distance-based global replacement
KW - Many-objective optimization
KW - Two-side update rule
KW - Two-stage upper bound vectors generation
KW - ε-Constraint framework
UR - http://www.scopus.com/inward/record.url?scp=85086373268&partnerID=8YFLogxK
U2 - 10.1016/j.ins.2020.05.097
DO - 10.1016/j.ins.2020.05.097
M3 - Article
AN - SCOPUS:85086373268
SN - 0020-0255
VL - 537
SP - 203
EP - 226
JO - Information Sciences
JF - Information Sciences
ER -