TY - JOUR
T1 - Diuretic Resistance Prediction and Risk Factor Analysis of Patients with Heart Failure During Hospitalization
AU - Lu, Xiao
AU - Xin, Yi
AU - Zhu, Jiang
AU - Dong, Wei
AU - Guan, Tong Peng
AU - Li, Jia Yue
AU - Li, Qin
N1 - Publisher Copyright:
© 2022 Elsevier B.V.. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Objectives: This study performed a prediction and risk factor analysis of diuretic resistance (DR) in patients with decompensated heart failure during hospitalization. Methods: The data of patients with decompensated heart failure treated in 2010- 2018 with DR (n = 3,383) or without DR (n = 15,444) were retrospectively collected from Chinese PLA General Hospital medical records. Statistical analysis of baseline was performed on two groups of people, and the risk factor of DR was analyzed through logic regression. Six machine learning models were built accordingly, and the adjustment of model super parameters was performed by using Bayesian optimization method. Finally, the optimal algorithm was selected according to prediction efficiency. Results: The preliminary analysis of variance showed significant differences in the incidence of DR among patients with lung infection, hyperlipidemia, type 2 diabetes, and kidney disease. There were significant differences in estimated glomerular filtration rate (eGFR) (P < 0.001). In addition, some physical indicators like BMI were different, the laboratory results like mean red blood cell volume or C-reactive protein assay were also significantly different. The optimal classification model indicated that the best cutoff points for risk factors were vein carbon dioxide, 21 mmol/L and 29 mmol/L; total protein, 64 g/L; pro-brain natriuretic peptide (pro-BNP), 7,600 pg/mL; eGFR, 50 mL/(min 1.73 m2); serum albumin, 33 g/L; hematocrit, 0.32% and 0.56%; red blood cell volume distribution width, 13; and age, 59 years. The optimal area under the curve was 0.9512. The ranked features derived from the model were age, abnormal sodium level, pro-BNP level, serum albumin level, d-dimer level, direct bilirubin level, and eGFR. Conclusions: The DR risk prediction model based on a gradient boosting decision tree created here identified its important risk factors. The model made very accurate predictions using simple indicators and simultaneously calculated cutoff values to help doctors predict the occurrence of DR.
AB - Objectives: This study performed a prediction and risk factor analysis of diuretic resistance (DR) in patients with decompensated heart failure during hospitalization. Methods: The data of patients with decompensated heart failure treated in 2010- 2018 with DR (n = 3,383) or without DR (n = 15,444) were retrospectively collected from Chinese PLA General Hospital medical records. Statistical analysis of baseline was performed on two groups of people, and the risk factor of DR was analyzed through logic regression. Six machine learning models were built accordingly, and the adjustment of model super parameters was performed by using Bayesian optimization method. Finally, the optimal algorithm was selected according to prediction efficiency. Results: The preliminary analysis of variance showed significant differences in the incidence of DR among patients with lung infection, hyperlipidemia, type 2 diabetes, and kidney disease. There were significant differences in estimated glomerular filtration rate (eGFR) (P < 0.001). In addition, some physical indicators like BMI were different, the laboratory results like mean red blood cell volume or C-reactive protein assay were also significantly different. The optimal classification model indicated that the best cutoff points for risk factors were vein carbon dioxide, 21 mmol/L and 29 mmol/L; total protein, 64 g/L; pro-brain natriuretic peptide (pro-BNP), 7,600 pg/mL; eGFR, 50 mL/(min 1.73 m2); serum albumin, 33 g/L; hematocrit, 0.32% and 0.56%; red blood cell volume distribution width, 13; and age, 59 years. The optimal area under the curve was 0.9512. The ranked features derived from the model were age, abnormal sodium level, pro-BNP level, serum albumin level, d-dimer level, direct bilirubin level, and eGFR. Conclusions: The DR risk prediction model based on a gradient boosting decision tree created here identified its important risk factors. The model made very accurate predictions using simple indicators and simultaneously calculated cutoff values to help doctors predict the occurrence of DR.
KW - decompensated heart failure
KW - diuretic resistance
KW - machine learning
KW - prediction
KW - risk factors
UR - http://www.scopus.com/inward/record.url?scp=85132006422&partnerID=8YFLogxK
U2 - 10.5334/gh.1113
DO - 10.5334/gh.1113
M3 - Article
C2 - 35837353
AN - SCOPUS:85132006422
SN - 2211-8160
VL - 17
JO - Global Heart
JF - Global Heart
IS - 1
M1 - 33
ER -