Abstract
This paper investigates distributed event-triggered consensus control for multi-agent systems with input delay. To deal with input delay, the original system is converted to a delay-free system via Artstein-Kwon-Pearson reduction transformation method. Distributed event-triggered protocols are designed to alleviate the communication burden of the agents. The system convergence is validated by using Lyapunov stability analysis and solving linear matrix inequality function. Furthermore, it is proved that the system does not display Zeno behavior under the proposed event-triggering function, and thus, consistent triggering is excluded from the system. A simulation example is given to demonstrate the effectiveness of the control algorithm.
Original language | English |
---|---|
Pages (from-to) | 2550-2555 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 53 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2020 |
Event | 21st IFAC World Congress 2020 - Berlin, Germany Duration: 12 Jul 2020 → 17 Jul 2020 |
Keywords
- Consensus control
- Event triggered control
- Input delay
- Multi-agent systems