Discovering all-Chain set in streaming time series

Shaopeng Wang*, Ye Yuan, Hua Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Time series chains discovery is an increasingly popular research area in time series mining. Previous studies on this topic process fixed-length time series. In this work, we focus on the issue of all-chain set mining over the streaming time series, where the all-chain set is a very important kind of the time series chains. We propose a novel all-chain set mining algorithm about streaming time series (ASMSTS) to solve this problem. The main idea behind the ASMSTS is to obtain the mining results at current time-tick based on the ones at the last one. This makes the method more efficiency in time and space than the Naïve. Our experiments illustrate that ASMSTS does indeed detect the all-chain set correctly and can offer dramatic improvements in speed and space cost over the Naive method.

Original languageEnglish
Title of host publicationAdvances in Knowledge Discovery and Data Mining - 23rd Pacific-Asia Conference, PAKDD 2019, Proceedings
EditorsMin-Ling Zhang, Zhiguo Gong, Zhi-Hua Zhou, Qiang Yang, Sheng-Jun Huang
PublisherSpringer Verlag
Pages306-318
Number of pages13
ISBN (Print)9783030161477
DOIs
Publication statusPublished - 2019
Externally publishedYes
Event23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019 - Macau, China
Duration: 14 Apr 201917 Apr 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11439 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019
Country/TerritoryChina
CityMacau
Period14/04/1917/04/19

Keywords

  • All-chain set
  • Streaming time series
  • Time series chains

Fingerprint

Dive into the research topics of 'Discovering all-Chain set in streaming time series'. Together they form a unique fingerprint.

Cite this