TY - GEN
T1 - Directionally Controlled Time-of-Flight Ranging for Mobile Sensing Platforms
AU - Tasneem, Zaid
AU - Wang, Dingkang
AU - Xie, Huikai
AU - Koppal, Sanjeev J.
N1 - Publisher Copyright:
© 2018, MIT Press Journals. All rights reserved.
PY - 2018
Y1 - 2018
N2 - Scanning time-of-flight (TOF) sensors obtain depth measurements by directing modulated light beams across a scene. We demonstrate that control of the directional scanning patterns can enable novel algorithms and applications. Our analysis occurs entirely in the angular domain and consists of two ideas. First, we show how to exploit the angular support of the light beam to improve reconstruction results. Second, we describe how to control the light beam direction in a way that maximizes a well-known information theoretic measure. Using these two ideas, we demonstrate novel applications such as adaptive TOF sensing, LIDAR zoom, LIDAR edge sensing for gradient-based reconstruction and energy efficient LIDAR scanning. Our contributions can apply equally to sensors using mechanical, opto-electronic or MEMS-based approaches to modulate the light beam, and we show results here on a MEMS mirror-based LIDAR system. In short, we describe new adaptive directionally controlled TOF sensing algorithms which can impact mobile sensing platforms such as robots, wearable devices and IoT nodes.
AB - Scanning time-of-flight (TOF) sensors obtain depth measurements by directing modulated light beams across a scene. We demonstrate that control of the directional scanning patterns can enable novel algorithms and applications. Our analysis occurs entirely in the angular domain and consists of two ideas. First, we show how to exploit the angular support of the light beam to improve reconstruction results. Second, we describe how to control the light beam direction in a way that maximizes a well-known information theoretic measure. Using these two ideas, we demonstrate novel applications such as adaptive TOF sensing, LIDAR zoom, LIDAR edge sensing for gradient-based reconstruction and energy efficient LIDAR scanning. Our contributions can apply equally to sensors using mechanical, opto-electronic or MEMS-based approaches to modulate the light beam, and we show results here on a MEMS mirror-based LIDAR system. In short, we describe new adaptive directionally controlled TOF sensing algorithms which can impact mobile sensing platforms such as robots, wearable devices and IoT nodes.
UR - http://www.scopus.com/inward/record.url?scp=85086633649&partnerID=8YFLogxK
U2 - 10.15607/RSS.2018.XIV.011
DO - 10.15607/RSS.2018.XIV.011
M3 - Conference contribution
AN - SCOPUS:85086633649
SN - 9780992374747
T3 - Robotics: Science and Systems
BT - Robotics
A2 - Kress-Gazit, Hadas
A2 - Srinivasa, Siddhartha S.
A2 - Howard, Tom
A2 - Atanasov, Nikolay
PB - MIT Press Journals
T2 - 14th Robotics: Science and Systems, RSS 2018
Y2 - 26 June 2018 through 30 June 2018
ER -