TY - JOUR
T1 - Direct measurement of aerosol pH in individual malonic acid and citric acid droplets under different relative humidity conditions via Raman spectroscopy
AU - Chang, Pianpian
AU - Chen, Zhe
AU - Zhang, Yunhong
AU - Liu, Yong
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2020/2
Y1 - 2020/2
N2 - Acidity of aerosol particles plays important roles in atmospheric chemistry, in turn, impacting climate system and public health. Current knowledge of acidity in atmosphere aerosols remains fairly scarce largely because of difficulty in direct measurement. On the other hand, indirect methods for estimating aerosol pH are often inconsistent with pH values predicted by thermodynamic models. Recently, a direct Raman spectroscopy method has been reported to determine pH values of acid-conjugate base equilibria systems based on Raman intensity of distinct characteristic peaks of conjugate acid-base pair. Nevertheless, for pure carboxylic acid aerosol particles, such as malonic acid (MA), characteristic peak of its conjugate base cannot be clearly observed in Raman spectra owing to small Ka value (weak acid dissociation constant), which leads to little dissociation of weak acid and low concentration of its conjugated base. As a result, pH of carboxylic acid particles cannot be directly determined by calibrating concentrations of acid and its conjugated base using the above-mentioned method. To address such an issue, we demonstrate a new approach for determining pH values of malonic acid (MA) and citric acid (CA) droplets under different relative humidity (RH) based on calibration curves. We measure Raman intensity ratios of acid solutions at different concentrations and their pH values to establish a calibration curve, and then using the intensity ratio of MA and CA droplets under different RH to determine aerosol particle pH based on calibration curves. Results have shown that aerosol pH of MA droplet decreases with a decreasing RH and pH values ranges from 1.03 to −0.12, when RH value is reduced from 90% to 26%, in good agreement with model prediction values. In addition, we also, for the first time, report pH values of CA droplets under different RH conditions and its pH values range from 1.13 to −0.74 when RH is reduced from 91% to 28%.
AB - Acidity of aerosol particles plays important roles in atmospheric chemistry, in turn, impacting climate system and public health. Current knowledge of acidity in atmosphere aerosols remains fairly scarce largely because of difficulty in direct measurement. On the other hand, indirect methods for estimating aerosol pH are often inconsistent with pH values predicted by thermodynamic models. Recently, a direct Raman spectroscopy method has been reported to determine pH values of acid-conjugate base equilibria systems based on Raman intensity of distinct characteristic peaks of conjugate acid-base pair. Nevertheless, for pure carboxylic acid aerosol particles, such as malonic acid (MA), characteristic peak of its conjugate base cannot be clearly observed in Raman spectra owing to small Ka value (weak acid dissociation constant), which leads to little dissociation of weak acid and low concentration of its conjugated base. As a result, pH of carboxylic acid particles cannot be directly determined by calibrating concentrations of acid and its conjugated base using the above-mentioned method. To address such an issue, we demonstrate a new approach for determining pH values of malonic acid (MA) and citric acid (CA) droplets under different relative humidity (RH) based on calibration curves. We measure Raman intensity ratios of acid solutions at different concentrations and their pH values to establish a calibration curve, and then using the intensity ratio of MA and CA droplets under different RH to determine aerosol particle pH based on calibration curves. Results have shown that aerosol pH of MA droplet decreases with a decreasing RH and pH values ranges from 1.03 to −0.12, when RH value is reduced from 90% to 26%, in good agreement with model prediction values. In addition, we also, for the first time, report pH values of CA droplets under different RH conditions and its pH values range from 1.13 to −0.74 when RH is reduced from 91% to 28%.
KW - Aerosol pH
KW - Citric acid
KW - Malonic acid
KW - Raman spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85072811734&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2019.124960
DO - 10.1016/j.chemosphere.2019.124960
M3 - Article
C2 - 31590017
AN - SCOPUS:85072811734
SN - 0045-6535
VL - 241
JO - Chemosphere
JF - Chemosphere
M1 - 124960
ER -