TY - GEN
T1 - Development of the hybrid wheel-legged mobile robot WR-3 designed to interact with rats
AU - Shi, Qing
AU - Miyagishima, Shunsyuke
AU - Konno, Shinichiro
AU - Fumino, Shogo
AU - Ishii, Hiroyuki
AU - Takanishi, Atsuo
AU - Laschi, Cecilia
AU - Mazzolai, Barbara
AU - Mattoli, Virgilio
AU - Dario, Paolo
PY - 2010
Y1 - 2010
N2 - This paper presents the design and development of a bio-inspired mobile robot called WR-3 (Waseda Rat No.3), as an experimental tool to study social interaction between rats and robots. According to the motion analysis of rats, their motion can be divided into two phases: moving and interaction. Therefore, a novel hybrid mechanism in which wheels are used for moving and legs are used for interaction has been designed to actuate the WR-3. Consequently, the robot can move at a high speed using its wheels and reproduce the rats' interaction using its legs and other parts. Based on the dimension and body structure of a mature rat, WR-3 has been designed with dimensions of 240×70×90[mm] and is the same shape as a rat. It consists of 18 DOFs in total: two 1-DOF wheels, four 3-DOF legs (including passive DOFs), a 2-DOF waist, and a 2-DOF neck. Preliminary interaction experiments with rats demonstrate that WR-3 is capable of reproducing interactions such as following, rearing, grooming, mounting, etc. similar to a real rat.
AB - This paper presents the design and development of a bio-inspired mobile robot called WR-3 (Waseda Rat No.3), as an experimental tool to study social interaction between rats and robots. According to the motion analysis of rats, their motion can be divided into two phases: moving and interaction. Therefore, a novel hybrid mechanism in which wheels are used for moving and legs are used for interaction has been designed to actuate the WR-3. Consequently, the robot can move at a high speed using its wheels and reproduce the rats' interaction using its legs and other parts. Based on the dimension and body structure of a mature rat, WR-3 has been designed with dimensions of 240×70×90[mm] and is the same shape as a rat. It consists of 18 DOFs in total: two 1-DOF wheels, four 3-DOF legs (including passive DOFs), a 2-DOF waist, and a 2-DOF neck. Preliminary interaction experiments with rats demonstrate that WR-3 is capable of reproducing interactions such as following, rearing, grooming, mounting, etc. similar to a real rat.
UR - http://www.scopus.com/inward/record.url?scp=78650394930&partnerID=8YFLogxK
U2 - 10.1109/BIOROB.2010.5627719
DO - 10.1109/BIOROB.2010.5627719
M3 - Conference contribution
AN - SCOPUS:78650394930
SN - 9781424477081
T3 - 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2010
SP - 887
EP - 892
BT - 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2010
T2 - 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2010
Y2 - 26 September 2010 through 29 September 2010
ER -