TY - JOUR
T1 - Development of a snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework
AU - Jiao, Ziti
AU - Ding, Anxin
AU - Kokhanovsky, Alexander
AU - Schaaf, Crystal
AU - Bréon, Francois Marie
AU - Dong, Yadong
AU - Wang, Zhuosen
AU - Liu, Yan
AU - Zhang, Xiaoning
AU - Yin, Siyang
AU - Cui, Lei
AU - Mei, Linlu
AU - Chang, Yaxuan
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2019/2
Y1 - 2019/2
N2 - The linear kernel-driven RossThick-LiSparseReciprocal (RTLSR) bidirectional reflectance distribution function (BRDF) model was originally developed from the simplified scenarios of continuous and discrete vegetation canopies, and has been widely used to fit multiangle observations of vegetation-soil systems of the land surface in many fields. Although this model was not developed explicitly for snow surfaces, it can capture the geometric-optical effect caused by the shadowing of rugged or undulating snow surfaces. However, in this study, this model has been further developed to better characterize the scattering properties of snow surface, which can also exhibit strongly forward-scattering behavior. This study proposes a new snow kernel to characterize the reflectance anisotropy of pure snow based on the asymptotic radiative transfer (ART) model that assumes snow can be modeled as a semi-infinite, plane-parallel, weakly absorbing light scattering layer. This new snow kernel adopts a correction term with a free parameter α to correct the analytic form of the ART model that has been reported to underestimate observed snow reflectance in the forward-scattering direction in the principal plane (PP), particularly in cases of a large viewing zenith angle (>60°). This snow kernel has now been implemented in the kernel-driven RTLSR BRDF model framework in conjunction with two additional kernels (i.e., the volumetric scattering kernel and geometric-optical scattering kernel) and is validated using observed and simulated multiangle data from three data sources. Pure snow targets were selected from the extensive archive of the Polarization and Directionality of the Earth's Reflectance (POLDER) BRDF data. Antarctic snow field measurements, which were taken from the top of a 32-m-tall tower at Dome C Station and include 6336 spectral bidirectional reflectance factors (BRFs), were also utilized. Finally, a set of simulated BRFs, generated by a hybrid scattering snow model that combines the geometric optics with vector radiative transfer theory, were used to further assess the proposed method. We first retrieve the value of the free parameter α for a comprehensive analysis using single multiangle snow data with a sufficient BRDF sampling. Then, we determine the optimally fixed value of the α parameter as prior information for potential users. The new snow kernel method is shown to be quite accurate, presenting a high correlation coefficient (R2 = ~0.9) and a negligible bias between the modeled BRFs and the various snow BRDF validation data. The finding demonstrates that this snow kernel provides an improved potential compared to that of the original kernel-driven model framework for a pure snow surface in many applications, particularly those involving the global water cycle and radiation budget, where snow cover plays an important role.
AB - The linear kernel-driven RossThick-LiSparseReciprocal (RTLSR) bidirectional reflectance distribution function (BRDF) model was originally developed from the simplified scenarios of continuous and discrete vegetation canopies, and has been widely used to fit multiangle observations of vegetation-soil systems of the land surface in many fields. Although this model was not developed explicitly for snow surfaces, it can capture the geometric-optical effect caused by the shadowing of rugged or undulating snow surfaces. However, in this study, this model has been further developed to better characterize the scattering properties of snow surface, which can also exhibit strongly forward-scattering behavior. This study proposes a new snow kernel to characterize the reflectance anisotropy of pure snow based on the asymptotic radiative transfer (ART) model that assumes snow can be modeled as a semi-infinite, plane-parallel, weakly absorbing light scattering layer. This new snow kernel adopts a correction term with a free parameter α to correct the analytic form of the ART model that has been reported to underestimate observed snow reflectance in the forward-scattering direction in the principal plane (PP), particularly in cases of a large viewing zenith angle (>60°). This snow kernel has now been implemented in the kernel-driven RTLSR BRDF model framework in conjunction with two additional kernels (i.e., the volumetric scattering kernel and geometric-optical scattering kernel) and is validated using observed and simulated multiangle data from three data sources. Pure snow targets were selected from the extensive archive of the Polarization and Directionality of the Earth's Reflectance (POLDER) BRDF data. Antarctic snow field measurements, which were taken from the top of a 32-m-tall tower at Dome C Station and include 6336 spectral bidirectional reflectance factors (BRFs), were also utilized. Finally, a set of simulated BRFs, generated by a hybrid scattering snow model that combines the geometric optics with vector radiative transfer theory, were used to further assess the proposed method. We first retrieve the value of the free parameter α for a comprehensive analysis using single multiangle snow data with a sufficient BRDF sampling. Then, we determine the optimally fixed value of the α parameter as prior information for potential users. The new snow kernel method is shown to be quite accurate, presenting a high correlation coefficient (R2 = ~0.9) and a negligible bias between the modeled BRFs and the various snow BRDF validation data. The finding demonstrates that this snow kernel provides an improved potential compared to that of the original kernel-driven model framework for a pure snow surface in many applications, particularly those involving the global water cycle and radiation budget, where snow cover plays an important role.
KW - Asymptotic radiative transfer (ART) model
KW - Bidirectional reflectance distribution function (BRDF)
KW - Forward scattering
KW - Kernel-driven model
KW - POLDER BRDF data
KW - RTLSR model
KW - Snow
UR - http://www.scopus.com/inward/record.url?scp=85056854500&partnerID=8YFLogxK
U2 - 10.1016/j.rse.2018.11.001
DO - 10.1016/j.rse.2018.11.001
M3 - Article
AN - SCOPUS:85056854500
SN - 0034-4257
VL - 221
SP - 198
EP - 209
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
ER -