Detecting Malware Using Graph Embedding and DNN

Rui Wang, Jun Zheng, Zhiwei Shi, Yu'an Tan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Nowadays, the popularity of intelligent terminals makes malwares more and more serious. Among the many features of application, the call graph can accurately express the behavior of the application. The rapid development of graph neural network in recent years provides a new solution for the malicious analysis of application using call graphs as features. However, there are still problems such as low accuracy. This paper established a large-scale data set containing more than 40,000 samples and selected the class call graph, which was extracted from the application, as the feature and used the graph embedding combined with the deep neural network to detect the malware. The experimental results show that the accuracy of the detection model proposed in this paper is 97.7%; the precision is 96.6%; the recall is 96.8%; the F1-score is 96.4%, which is better than the existing detection model based on Markov chain and graph embedding detection model.

Original languageEnglish
Title of host publicationProceedings - 2022 International Conference on Blockchain Technology and Information Security, ICBCTIS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages28-31
Number of pages4
ISBN (Electronic)9781665496919
DOIs
Publication statusPublished - 2022
Event2022 International Conference on Blockchain Technology and Information Security, ICBCTIS 2022 - Huaihua City, China
Duration: 15 Jul 202217 Jul 2022

Publication series

NameProceedings - 2022 International Conference on Blockchain Technology and Information Security, ICBCTIS 2022

Conference

Conference2022 International Conference on Blockchain Technology and Information Security, ICBCTIS 2022
Country/TerritoryChina
CityHuaihua City
Period15/07/2217/07/22

Keywords

  • deep neural network
  • feature vector
  • graph embedding
  • malware detection

Fingerprint

Dive into the research topics of 'Detecting Malware Using Graph Embedding and DNN'. Together they form a unique fingerprint.

Cite this