TY - JOUR
T1 - Detecting and predicting the topic change of Knowledge-based Systems
T2 - A topic-based bibliometric analysis from 1991 to 2016
AU - Zhang, Yi
AU - Chen, Hongshu
AU - Lu, Jie
AU - Zhang, Guangquan
N1 - Publisher Copyright:
© 2017
PY - 2017/10/1
Y1 - 2017/10/1
N2 - The journal Knowledge-based Systems (KnoSys) has been published for over 25 years, during which time its main foci have been extended to a broad range of studies in computer science and artificial intelligence. Answering the questions: “What is the KnoSys community interested in?” and “How does such interest change over time?” are important to both the editorial board and audience of KnoSys. This paper conducts a topic-based bibliometric study to detect and predict the topic changes of KnoSys from 1991 to 2016. A Latent Dirichlet Allocation model is used to profile the hotspots of KnoSys and predict possible future trends from a probabilistic perspective. A model of scientific evolutionary pathways applies a learning-based process to detect the topic changes of KnoSys in sequential time slices. Six main research areas of KnoSys are identified, i.e., expert systems, machine learning, data mining, decision making, optimization, and fuzzy, and the results also indicate that the interest of KnoSys communities in the area of computational intelligence is raised, and the ability to construct practical systems through knowledge use and accurate prediction models is highly emphasized. Such empirical insights can be used as a guide for KnoSys submissions.
AB - The journal Knowledge-based Systems (KnoSys) has been published for over 25 years, during which time its main foci have been extended to a broad range of studies in computer science and artificial intelligence. Answering the questions: “What is the KnoSys community interested in?” and “How does such interest change over time?” are important to both the editorial board and audience of KnoSys. This paper conducts a topic-based bibliometric study to detect and predict the topic changes of KnoSys from 1991 to 2016. A Latent Dirichlet Allocation model is used to profile the hotspots of KnoSys and predict possible future trends from a probabilistic perspective. A model of scientific evolutionary pathways applies a learning-based process to detect the topic changes of KnoSys in sequential time slices. Six main research areas of KnoSys are identified, i.e., expert systems, machine learning, data mining, decision making, optimization, and fuzzy, and the results also indicate that the interest of KnoSys communities in the area of computational intelligence is raised, and the ability to construct practical systems through knowledge use and accurate prediction models is highly emphasized. Such empirical insights can be used as a guide for KnoSys submissions.
KW - Bibliometrics
KW - Knowledge-based Systems
KW - Text mining
KW - Topic analysis
KW - Topic detection and tracking
UR - http://www.scopus.com/inward/record.url?scp=85024905068&partnerID=8YFLogxK
U2 - 10.1016/j.knosys.2017.07.011
DO - 10.1016/j.knosys.2017.07.011
M3 - Article
AN - SCOPUS:85024905068
SN - 0950-7051
VL - 133
SP - 255
EP - 268
JO - Knowledge-Based Systems
JF - Knowledge-Based Systems
ER -