Abstract
Percutaneous transmyocardial laser revasculariztion (PMLR), a kind of new percutaneous coronary intervention based on transmyocardial laser revascularization (TMLR) is to improve the circulation of ischemia myocardium by laser myocardial revascularization from the cardiac cavity. In our previous research, the characteristic of laser transmission in myocardium including photon reflection, absorption and scattering was introduced. The photon state at the emission, transmission and disappearance stage, the processes of photon weight decay and the change of photon movement step and direction were described and simulated by using Monte Carlo method. All of the above were simulated by MATLAB, and the relationship between different optical property parameters, absorption coefficient, scattering coefficient, anisotropic coefficient, and photon energy density in myocardium was discussed. In this study simulation of photon transport using Monte Carlo operating platform was programmed by C++ language to investigate the influence of increasing photons on the simulation at different optical properties parameters and clinical intelligent PMLR operating platform was established to achieve the optimal number of laser holes, aperture, single hole perfusion, threshold power and corresponding parameters of each hole, which provided a reference for the operation program.
Original language | English |
---|---|
Article number | 09005 |
Journal | MATEC Web of Conferences |
Volume | 40 |
DOIs | |
Publication status | Published - 29 Jan 2016 |
Event | 2015 International Conference on Mechanical Engineering and Electrical Systems, ICMES 2015 - Singapore, Singapore Duration: 16 Dec 2015 → 18 Dec 2015 |
Keywords
- Ischemic Cardiomyopathy Percutaneous Myocardial Laser Revascularization Monte Carlo Software