Abstract
The field of view (FOV) of a geometrical waveguide display is limited by the total internal reflection (TIR) condition (related with the index of glass) and the stray light generated inside the waveguide. A novel concept of an ultra-thin, wide-angle, stray-light-free, optical see-through near-eye display (NED) with a dual-layer geometrical waveguide is proposed in this paper. In the dual-layer waveguide, the two waveguides have different structures and are responsible for two different FOVs which are spliced together to form the entire FOV. The stray light of the dual-layer waveguide is analyzed and an optimized structure to suppress the stray light is designed. An optimized coupling-in structure is designed and a progressive optimization method is proposed for optimizing the illuminance uniformity of the entire FOV across the exit pupil. A dual-layer waveguide with a total thickness of 3.0 mm and stray light of less than 1% is designed. The FOV is 62° in the pupil-expanding direction, and the diameter of the exit pupil (EPD) is 10 mm at an eye relief (ER) of 18 mm. A compact projection optic is designed and finally is integrated with the dual-layer waveguide.
Original language | English |
---|---|
Pages (from-to) | 35376-35394 |
Number of pages | 19 |
Journal | Optics Express |
Volume | 28 |
Issue number | 23 |
DOIs | |
Publication status | Published - 9 Nov 2020 |