Design arbitrary shaped 2D acoustic cloak without singularity

Jin Hu, Xiaoming Zhou, Gengkai Hu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A method is proposed to design arbitrary shaped two dimensional (2D) isotropic-inertia acoustic cloaks without singularity. The method is based on the deformation view of the transformation method, where the transformation tensor A is identified as the deformation gradient tensor and the transformed material parameters can be expressed by the principal stretches in the principal system of the deformation. The infinite material parameters of a perfect 2D cloak is induced by an infinite principal stretch in one direction while the other two remains finite at the inner boundary during the transformation. To circumvent this difficulty, for a 2D cloak we can choose the principal stretch perpendicular to the cloak plane to be also infinite but in the same order as the infinite principal stretch in the cloak plane during the transformation, so the transformed material parameters may keep finite. To illustrate this idea, the analytical expressions of nonsingular material parameters for a cylindrical acoustic cloak are given. For the acoustic cloaks with irregular shapes, the numerical method is proposed to evaluate the principal stretches and in turn the nonsingular material parameters. The designed 2D cloaks are validated by numerical simulation.

Original languageEnglish
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages97-102
Number of pages6
ISBN (Print)9780791843888
DOIs
Publication statusPublished - 2010
Event2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009 - Lake Buena Vista, FL, United States
Duration: 13 Nov 200919 Nov 2009

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
Volume15

Conference

Conference2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period13/11/0919/11/09

Fingerprint

Dive into the research topics of 'Design arbitrary shaped 2D acoustic cloak without singularity'. Together they form a unique fingerprint.

Cite this