TY - GEN
T1 - Design arbitrary shaped 2D acoustic cloak without singularity
AU - Hu, Jin
AU - Zhou, Xiaoming
AU - Hu, Gengkai
PY - 2010
Y1 - 2010
N2 - A method is proposed to design arbitrary shaped two dimensional (2D) isotropic-inertia acoustic cloaks without singularity. The method is based on the deformation view of the transformation method, where the transformation tensor A is identified as the deformation gradient tensor and the transformed material parameters can be expressed by the principal stretches in the principal system of the deformation. The infinite material parameters of a perfect 2D cloak is induced by an infinite principal stretch in one direction while the other two remains finite at the inner boundary during the transformation. To circumvent this difficulty, for a 2D cloak we can choose the principal stretch perpendicular to the cloak plane to be also infinite but in the same order as the infinite principal stretch in the cloak plane during the transformation, so the transformed material parameters may keep finite. To illustrate this idea, the analytical expressions of nonsingular material parameters for a cylindrical acoustic cloak are given. For the acoustic cloaks with irregular shapes, the numerical method is proposed to evaluate the principal stretches and in turn the nonsingular material parameters. The designed 2D cloaks are validated by numerical simulation.
AB - A method is proposed to design arbitrary shaped two dimensional (2D) isotropic-inertia acoustic cloaks without singularity. The method is based on the deformation view of the transformation method, where the transformation tensor A is identified as the deformation gradient tensor and the transformed material parameters can be expressed by the principal stretches in the principal system of the deformation. The infinite material parameters of a perfect 2D cloak is induced by an infinite principal stretch in one direction while the other two remains finite at the inner boundary during the transformation. To circumvent this difficulty, for a 2D cloak we can choose the principal stretch perpendicular to the cloak plane to be also infinite but in the same order as the infinite principal stretch in the cloak plane during the transformation, so the transformed material parameters may keep finite. To illustrate this idea, the analytical expressions of nonsingular material parameters for a cylindrical acoustic cloak are given. For the acoustic cloaks with irregular shapes, the numerical method is proposed to evaluate the principal stretches and in turn the nonsingular material parameters. The designed 2D cloaks are validated by numerical simulation.
UR - http://www.scopus.com/inward/record.url?scp=77954299973&partnerID=8YFLogxK
U2 - 10.1115/IMECE2009-10727
DO - 10.1115/IMECE2009-10727
M3 - Conference contribution
AN - SCOPUS:77954299973
SN - 9780791843888
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings
SP - 97
EP - 102
BT - Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PB - American Society of Mechanical Engineers (ASME)
T2 - 2009 ASME International Mechanical Engineering Congress and Exposition, IMECE2009
Y2 - 13 November 2009 through 19 November 2009
ER -