Abstract
Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype performance evaluation and imaging analysis are completed. In the system design, a 2D holographic waveguide AR-NED integrated with a miniature projection optical system is presented to achieve a larger 2D eye box expansion (EBE). A design method for controlling the luminance uniformity of 2D-EPE holographic waveguide by dividing the two thicknesses of HOEs is proposed, which is easy to fabricate. The optical principle and design method of the HOE-based 2D-EBE holographic waveguide are described in detail. In the system fabrication, laser exposure fabrication method of eliminating stray light for HOEs is proposed, and a prototype system is fabricated and demonstrated. The properties of the fabricated HOEs and the prototype are analyzed in detail. The experimental results verified that the 2D-EBE holographic waveguide has a diagonal field of view (FOV) of 45°, an ultra-thin thickness of 1 mm, and an eye box of 16 mm× 13 mm at an eye relief (ERF) of 18 mm, the MTF values of different FOVs at different 2D-EPE positions can be better than 0.2 at 20 lp/mm, and the whole luminance uniformity is 58%.
Original language | English |
---|---|
Pages (from-to) | 11019-11040 |
Number of pages | 22 |
Journal | Optics Express |
Volume | 31 |
Issue number | 7 |
DOIs | |
Publication status | Published - 27 Mar 2023 |