TY - GEN
T1 - Design and Control of an Ultra-Slender Push-Pull Multisection Continuum Manipulator for In-Situ Inspection of Aeroengine
AU - Zhong, Weiheng
AU - Huang, Yuancan
AU - Hong, Da
AU - Shao, Nianfeng
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Since the shape of industrial endoscopes is passively altered according to the contact around it, manual inspection approaches of aeroengines through the inspection ports have unreachable areas, and it's difficult to traverse multistage blades and inspect them simultaneously, which requires engine disassembly or the cooperation of multiple operators, resulting in efficiency decline and increased costs. To this end, this paper proposes a novel continuum manipulator with push-pull multisection structure which provides a potential solution for the disadvantages mentioned above due to its higher flexibility, passability, and controllability in confined spaces. The ultra-slender design combined with a tendon-driven mechanism makes the manipulator acquire enough workspace and more flexible postures while maintaining a light weight. Considering the coupling between the tendons in multisection, a innovative kinematics decoupling control method is implemented, which can realize real-time control in the case of limited computational resources. A prototype is built to validate the capabilities of mechatronic design and the performance of the control algorithm. The experimental results demonstrate the advantages of our continuum manipulator in the in-situ inspection of aeroengines' multistage blades, which has the potential to be a replacement solution for industrial endoscopes.
AB - Since the shape of industrial endoscopes is passively altered according to the contact around it, manual inspection approaches of aeroengines through the inspection ports have unreachable areas, and it's difficult to traverse multistage blades and inspect them simultaneously, which requires engine disassembly or the cooperation of multiple operators, resulting in efficiency decline and increased costs. To this end, this paper proposes a novel continuum manipulator with push-pull multisection structure which provides a potential solution for the disadvantages mentioned above due to its higher flexibility, passability, and controllability in confined spaces. The ultra-slender design combined with a tendon-driven mechanism makes the manipulator acquire enough workspace and more flexible postures while maintaining a light weight. Considering the coupling between the tendons in multisection, a innovative kinematics decoupling control method is implemented, which can realize real-time control in the case of limited computational resources. A prototype is built to validate the capabilities of mechatronic design and the performance of the control algorithm. The experimental results demonstrate the advantages of our continuum manipulator in the in-situ inspection of aeroengines' multistage blades, which has the potential to be a replacement solution for industrial endoscopes.
UR - http://www.scopus.com/inward/record.url?scp=85216447816&partnerID=8YFLogxK
U2 - 10.1109/IROS58592.2024.10802783
DO - 10.1109/IROS58592.2024.10802783
M3 - Conference contribution
AN - SCOPUS:85216447816
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 11394
EP - 11401
BT - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Y2 - 14 October 2024 through 18 October 2024
ER -