Depth Normalized Stable View Synthesis

Xiaodi Wu, Zhiqiang Zhang*, Wenxin Yu, Shiyu Chen, Yufei Gao, Peng Chen, Jun Gong

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Novel view synthesis (NVS) aims to synthesize photo-realistic images depicting a scene by utilizing existing source images. The synthesized images are supposed to be as close as possible to the scene content. We present Deep Normalized Stable View Synthesis (DNSVS), an NVS method for large-scale scenes based on the pipeline of Stable View Synthesis (SVS). SVS combines neural networks with the 3D scene representation obtained from structure-from-motion and multi-view stereo, where the view rays corresponding to each surface point of the scene representation and the source view feature vector together yield a value of each pixel in the target view. However, it weakens geometric information in the refinement stage, resulting in blur and artifacts in novel views. To address this, we propose DNSVS that leverages the depth map to enhance the rendering process via a normalization approach. The proposed method is evaluated on the Tanks and Temples dataset, as well as the FVS dataset. The average Learned Perceptual Image Patch Similarity (LPIPS) of our results is better than state-of-the-art NVS methods by 0.12%, indicating the superiority of our method.

Original languageEnglish
Title of host publicationNeural Information Processing - 30th International Conference, ICONIP 2023, Proceedings
EditorsBiao Luo, Long Cheng, Zheng-Guang Wu, Hongyi Li, Chaojie Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages56-68
Number of pages13
ISBN (Print)9789819981809
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event30th International Conference on Neural Information Processing, ICONIP 2023 - Changsha, China
Duration: 20 Nov 202323 Nov 2023

Publication series

NameCommunications in Computer and Information Science
Volume1968 CCIS
ISSN (Print)1865-0929
ISSN (Electronic)1865-0937

Conference

Conference30th International Conference on Neural Information Processing, ICONIP 2023
Country/TerritoryChina
CityChangsha
Period20/11/2323/11/23

Keywords

  • Deep Learning
  • Normalization
  • Novel View Synthesis

Fingerprint

Dive into the research topics of 'Depth Normalized Stable View Synthesis'. Together they form a unique fingerprint.

Cite this