TY - JOUR
T1 - Demand forecasting DBA algorithm for reducing packet delay with efficient bandwidth allocation in XG-PON
AU - Memon, Kamran Ali
AU - Mohammadani, Khalid H.
AU - Ain ul, Noor
AU - Shaikh, Arshad
AU - Ullah, Sibghat
AU - Zhang, Qi
AU - Das, Bhagwan
AU - Ullah, Rahat
AU - Tian, Feng
AU - Xin, Xiangjun
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/2
Y1 - 2019/2
N2 - In a typical 10G-Passive Optical Network (XG-PON), the propagation delay between the Optical Network Unit (ONU) and Optical Line Terminal (OLT) is about 0.3 ms. With a frame size of 125 µs, this amounts to three frames of data in the upstream and three frames of data in the downstream. Assuming no processing delays, the grants for any bandwidth requests reach the ONU after six frames in this request-grant cycle. Often, during this six-frame delay, the queue situation is changed drastically, as much, more data would arrive in the queue. As a result, the queued data that is delayed loses its significance due to its real-time nature. Unfortunately, almost all dynamic bandwidth allocation (DBA) algorithms follow this request-grant cycle and hence lacking in their performance. This paper introduces a novel approach for bandwidth allocation, called Demand Forecasting DBA (DF-DBA), which predicts ONU’s future demands by statistical modelling of the demand patterns and tends to fulfil the predicted demands just in time, which results in reduced delay. Simulation results indicate that the proposed technique out-performs previous DBAs, such as GigaPON access network (GIANT) and round robin (RR) employing the request-grant cycle in terms of Throughput and Packet delivery ratio (PDR). Circular buffers are introduced in statistical predictions, which produce the least delay for this novel DF-DBA. This paper, hence, opens up a new horizon of research in which researchers may come up with better statistical models to brew better and better results for Passive optical networks.
AB - In a typical 10G-Passive Optical Network (XG-PON), the propagation delay between the Optical Network Unit (ONU) and Optical Line Terminal (OLT) is about 0.3 ms. With a frame size of 125 µs, this amounts to three frames of data in the upstream and three frames of data in the downstream. Assuming no processing delays, the grants for any bandwidth requests reach the ONU after six frames in this request-grant cycle. Often, during this six-frame delay, the queue situation is changed drastically, as much, more data would arrive in the queue. As a result, the queued data that is delayed loses its significance due to its real-time nature. Unfortunately, almost all dynamic bandwidth allocation (DBA) algorithms follow this request-grant cycle and hence lacking in their performance. This paper introduces a novel approach for bandwidth allocation, called Demand Forecasting DBA (DF-DBA), which predicts ONU’s future demands by statistical modelling of the demand patterns and tends to fulfil the predicted demands just in time, which results in reduced delay. Simulation results indicate that the proposed technique out-performs previous DBAs, such as GigaPON access network (GIANT) and round robin (RR) employing the request-grant cycle in terms of Throughput and Packet delivery ratio (PDR). Circular buffers are introduced in statistical predictions, which produce the least delay for this novel DF-DBA. This paper, hence, opens up a new horizon of research in which researchers may come up with better statistical models to brew better and better results for Passive optical networks.
KW - Circular buffer
KW - Delay
KW - Demand forecasting DBA
KW - Request-grant cycle
KW - XG-PON
UR - http://www.scopus.com/inward/record.url?scp=85062884482&partnerID=8YFLogxK
U2 - 10.3390/electronics8020147
DO - 10.3390/electronics8020147
M3 - Article
AN - SCOPUS:85062884482
SN - 2079-9292
VL - 8
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 2
M1 - 147
ER -