TY - GEN
T1 - Degradation-Resistant Unfolding Network for Heterogeneous Image Fusion
AU - He, Chunming
AU - Li, Kai
AU - Xu, Guoxia
AU - Zhang, Yulun
AU - Hu, Runze
AU - Guo, Zhenhua
AU - Li, Xiu
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Heterogeneous image fusion (HIF) techniques aim to enhance image quality by merging complementary information from images captured by different sensors. Among these algorithms, deep unfolding network (DUN)-based methods achieve promising performance but still suffer from two issues: they lack a degradation-resistant-oriented fusion model and struggle to adequately consider the structural properties of DUNs, making them vulnerable to degradation scenarios. In this paper, we propose a Degradation-Resistant Unfolding Network (DeRUN) for the HIF task to generate high-quality fused images even in degradation scenarios. Specifically, we introduce a novel HIF model for degradation resistance and derive its optimization procedures. Then, we incorporate the optimization unfolding process into the proposed DeRUN for end-to-end training. To ensure the robustness and efficiency of DeRUN, we employ a joint constraint strategy and a lightweight partial weight sharing module. To train DeRUN, we further propose a gradient direction-based entropy loss with powerful texture representation capacity. Extensive experiments show that DeRUN significantly outperforms existing methods on four HIF tasks, as well as downstream applications, with cheaper computational and memory costs.
AB - Heterogeneous image fusion (HIF) techniques aim to enhance image quality by merging complementary information from images captured by different sensors. Among these algorithms, deep unfolding network (DUN)-based methods achieve promising performance but still suffer from two issues: they lack a degradation-resistant-oriented fusion model and struggle to adequately consider the structural properties of DUNs, making them vulnerable to degradation scenarios. In this paper, we propose a Degradation-Resistant Unfolding Network (DeRUN) for the HIF task to generate high-quality fused images even in degradation scenarios. Specifically, we introduce a novel HIF model for degradation resistance and derive its optimization procedures. Then, we incorporate the optimization unfolding process into the proposed DeRUN for end-to-end training. To ensure the robustness and efficiency of DeRUN, we employ a joint constraint strategy and a lightweight partial weight sharing module. To train DeRUN, we further propose a gradient direction-based entropy loss with powerful texture representation capacity. Extensive experiments show that DeRUN significantly outperforms existing methods on four HIF tasks, as well as downstream applications, with cheaper computational and memory costs.
UR - http://www.scopus.com/inward/record.url?scp=85178431682&partnerID=8YFLogxK
U2 - 10.1109/ICCV51070.2023.01159
DO - 10.1109/ICCV51070.2023.01159
M3 - Conference contribution
AN - SCOPUS:85178431682
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 12577
EP - 12587
BT - Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Y2 - 2 October 2023 through 6 October 2023
ER -