Abstract
In this study, a specific Mg-Zn-RE alloy membrane with 6 wt.% zinc and 2.7 wt.% rare earth elements (Y, Gd, La and Ce) was prepared to investigate implant degradation, transport mechanism and guide bone regeneration in vivo. The Mg-membrane microstructure and precipitates were characterized by the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM). The Mg-membrane degradation process and effect on osteogenesis were investigated in a critical-sized rat calvarial defect model via micro-CT examination and hard tissue slicing after 2-, 5- and 8-week implants. Then, the distribution of elements in organs after 1-, 2- and 4-weeks implantation was examined to explore their transportation routes. Results showed that two types of precipitates had formed in the Mg-membrane after a 10-h heat treatment at 175 °C: γ-phase MgZn precipitation with dissolved La, Ce and Gd, and W-phase Mg3(Y, Gd)2Zn3 precipitation rich in Y and Gd. In the degradation process of the Mg-membrane, the Mg matrix degraded first, and the rare earth-rich precipitation particles were transferred to a more stable phosphate compound. The element release rate was dependent on the precipitate type and composition. Rare earth elements may be transported mainly through the lymph system. The defects were repaired rapidly by the membranes. The Mg-membrane used in the present study showed excellent biocompatibility and enhanced bone formation in the vicinity of the implants.
Original language | English |
---|---|
Article number | 496 |
Journal | Coatings |
Volume | 10 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 May 2020 |
Keywords
- In vivo degradation
- Magnesium alloy
- Osteogenic activity
- Precipitate
- Rare earth elements
- Transport mechanism