DeepWeave: Accelerating job completion time with deep reinforcement learning-based coflow scheduling

Penghao Sun, Zehua Guo*, Junchao Wang, Junfei Li, Julong Lan, Yuxiang Hu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

37 Citations (Scopus)

Abstract

To improve the processing efficiency of jobs in distributed computing, the concept of coflow is proposed. A coflow is a collection of flows that are semantically correlated in a multi-stage computation task. A job consists of multiple coflows and can be usually formulated as a Directed-Acyclic Graph (DAG). A proper scheduling of coflows can significantly reduce the completion time of jobs in distributed computing. However, this scheduling problem is proved to be NP-hard. Different from existing schemes that use hand-crafted heuristic algorithms to solve this problem, in this paper, we propose a Deep Reinforcement Learning (DRL) framework named DeepWeave to generate coflow scheduling policies. To improve the inter-coflow scheduling ability in the job DAG, DeepWeave employs a Graph Neural Network (GNN) to process the DAG information. DeepWeave learns from the history workload trace to train the neural networks of the DRL agent and encodes the scheduling policy in the neural networks, which make coflow scheduling decisions without expert knowledge or a pre-assumed model. The proposed scheme is evaluated with a simulator using real-life traces. Simulation results show that DeepWeave completes jobs at least 1.7× faster than the state-of-the-art solutions.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3314-3320
Number of pages7
ISBN (Electronic)9780999241165
Publication statusPublished - 2020
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/01/21 → …

Fingerprint

Dive into the research topics of 'DeepWeave: Accelerating job completion time with deep reinforcement learning-based coflow scheduling'. Together they form a unique fingerprint.

Cite this