Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process

Yan Zhang, Huaiping Jin*, Haipeng Liu, Biao Yang, Shoulong Dong

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Soft sensor technology has become an effective tool to enable real-time estimations of key quality variables in industrial rubber-mixing processes, which facilitates efficient monitoring and a control of rubber manufacturing. However, it remains a challenging issue to develop high-performance soft sensors due to improper feature selection/extraction and insufficiency of labeled data. Thus, a deep semi-supervised just-in-time learning-based Gaussian process regression (DSSJITGPR) is developed for Mooney viscosity estimation. It integrates just-in-time learning, semi-supervised learning, and deep learning into a unified modeling framework. In the offline stage, the latent feature information behind the historical process data is extracted through a stacked autoencoder. Then, an evolutionary pseudo-labeling estimation approach is applied to extend the labeled modeling database, where high-confidence pseudo-labeled data are obtained by solving an explicit pseudo-labeling optimization problem. In the online stage, when the query sample arrives, a semi-supervised JITGPR model is built from the enlarged modeling database to achieve Mooney viscosity estimation. Compared with traditional Mooney-viscosity soft sensor methods, DSSJITGPR shows significant advantages in extracting latent features and handling label scarcity, thus delivering superior prediction performance. The effectiveness and superiority of DSSJITGPR has been verified through the Mooney viscosity prediction results from an industrial rubber-mixing process.

Original languageEnglish
Article number1018
JournalPolymers
Volume14
Issue number5
DOIs
Publication statusPublished - 1 Mar 2022

Keywords

  • Gaussian process regression
  • Just-in-time learning
  • Mooney viscosity
  • Rubber mixing process
  • Semi-supervised learning
  • Soft sensor
  • Stacked autoencoder

Fingerprint

Dive into the research topics of 'Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process'. Together they form a unique fingerprint.

Cite this