Deep crisp boundaries

Yupei Wang, Xin Zhao, Kaiqi Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

98 Citations (Scopus)

Abstract

Edge detection has made significant progress with the help of deep Convolutional Networks (ConvNet). ConvNet based edge detectors approached human level performance on standard benchmarks. We provide a systematical study of these detector outputs, and show that they failed to accurately localize edges, which can be adversarial for tasks that require crisp edge inputs. In addition, we propose a novel refinement architecture to address the challenging problem of learning a crisp edge detector using ConvNet. Our method leverages a top-down backward refinement pathway, and progressively increases the resolution of feature maps to generate crisp edges. Our results achieve promising performance on BSDS500, surpassing human accuracy when using standard criteria, and largely outperforming state-of-the-art methods when using more strict criteria. We further demonstrate the benefit of crisp edge maps for estimating optical flow and generating object proposals.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1724-1732
Number of pages9
ISBN (Electronic)9781538604571
DOIs
Publication statusPublished - 6 Nov 2017
Externally publishedYes
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 21 Jul 201726 Jul 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period21/07/1726/07/17

Fingerprint

Dive into the research topics of 'Deep crisp boundaries'. Together they form a unique fingerprint.

Cite this