TY - JOUR
T1 - Decoupling analysis of China's mining industrial development and water usage
T2 - Based on production-based and consumption-based perspectives
AU - Li, Yiming
AU - Zhang, Yingnan
AU - Yang, Lin
AU - Du, Fenglian
AU - Sai, Linna
AU - Zhang, Bin
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2023/1/20
Y1 - 2023/1/20
N2 - Mining is one of the most significant water users in the socioeconomic system. To safeguard water resources while ensuring mining safety and maintaining economic growth, it is vital to decouple water usage from mining industry expansion. Previous studies have mainly focused on direct water withdrawal in the power sector, whereas water usage, especially the embodied water footprint (WF) in the mining sector, has received less attention. This study employed the Tapio decoupling index and input‒output analysis to explore the relationship between the mining industrial development of four major mining sectors and their Production-based Water Usage (PWU) and Consumption-based Water Usage (CWU) in China from 2002 to 2015. We found that (1) During the study period, the total PWU, which presents an inverted U-shaped tendency increasing by 31.74%, was much larger than the CWU, decreasing by 18.6%, and their gap gradually widened. The “Mining and Washing of Coal” (MWC) and the “Mining and Processing of Metal Ores” (MPMO) were the largest consumers in the PWU and CWU, respectively. (2) The PWU of the whole mining sector presented a strong negative decoupling from 2002 to 2015. The “Mining and Processing of Nonmetal Ores” (MPNO) achieved strong decoupling, while MPMO and MWC presented strong negative decoupling and the “Extraction of petroleum and natural gas” (EPNG) displayed weak negative decoupling. (3) In terms of the CWU, except for EPNG, the other three sectors displayed recession decoupling, resulting in the whole mining sector presenting a recession decoupling state. Overall, our results could provide a scientific basis for the rational use of water resources in the mining sector.
AB - Mining is one of the most significant water users in the socioeconomic system. To safeguard water resources while ensuring mining safety and maintaining economic growth, it is vital to decouple water usage from mining industry expansion. Previous studies have mainly focused on direct water withdrawal in the power sector, whereas water usage, especially the embodied water footprint (WF) in the mining sector, has received less attention. This study employed the Tapio decoupling index and input‒output analysis to explore the relationship between the mining industrial development of four major mining sectors and their Production-based Water Usage (PWU) and Consumption-based Water Usage (CWU) in China from 2002 to 2015. We found that (1) During the study period, the total PWU, which presents an inverted U-shaped tendency increasing by 31.74%, was much larger than the CWU, decreasing by 18.6%, and their gap gradually widened. The “Mining and Washing of Coal” (MWC) and the “Mining and Processing of Metal Ores” (MPMO) were the largest consumers in the PWU and CWU, respectively. (2) The PWU of the whole mining sector presented a strong negative decoupling from 2002 to 2015. The “Mining and Processing of Nonmetal Ores” (MPNO) achieved strong decoupling, while MPMO and MWC presented strong negative decoupling and the “Extraction of petroleum and natural gas” (EPNG) displayed weak negative decoupling. (3) In terms of the CWU, except for EPNG, the other three sectors displayed recession decoupling, resulting in the whole mining sector presenting a recession decoupling state. Overall, our results could provide a scientific basis for the rational use of water resources in the mining sector.
KW - Consumption-based
KW - Decoupling
KW - Mining sector
KW - Production-based
KW - Water usage
UR - http://www.scopus.com/inward/record.url?scp=85144607363&partnerID=8YFLogxK
U2 - 10.1016/j.jclepro.2022.135668
DO - 10.1016/j.jclepro.2022.135668
M3 - Article
AN - SCOPUS:85144607363
SN - 0959-6526
VL - 385
JO - Journal of Cleaner Production
JF - Journal of Cleaner Production
M1 - 135668
ER -