Data Science Applications in Circular Economy: Trends, Status, and Future

Bu Zhao, Zongqi Yu, Hongze Wang, Chenyang Shuai, Shen Qu, Ming Xu*

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    6 Citations (Scopus)

    Abstract

    The circular economy (CE) aims to decouple the growth of the economy from the consumption of finite resources through strategies, such as eliminating waste, circulating materials in use, and regenerating natural systems. Due to the rapid development of data science (DS), promising progress has been made in the transition toward CE in the past decade. DS offers various methods to achieve accurate predictions, accelerate product sustainable design, prolong asset life, optimize the infrastructure needed to circulate materials, and provide evidence-based insights. Despite the exciting scientific advances in this field, there still lacks a comprehensive review on this topic to summarize past achievements, synthesize knowledge gained, and navigate future research directions. In this paper, we try to summarize how DS accelerated the transition to CE. We conducted a critical review of where and how DS has helped the CE transition with a focus on four areas including (1) characterizing socioeconomic metabolism, (2) reducing unnecessary waste generation by enhancing material efficiency and optimizing product design, (3) extending product lifetime through repair, and (4) facilitating waste reuse and recycling. We also introduced the limitations and challenges in the current applications and discussed opportunities to provide a clear roadmap for future research in this field.

    Original languageEnglish
    Pages (from-to)6457-6474
    Number of pages18
    JournalEnvironmental Science and Technology
    Volume58
    Issue number15
    DOIs
    Publication statusPublished - 16 Apr 2024

    Keywords

    • Circular Economy
    • Data Science
    • Data-Driven Modeling
    • Machine Learning
    • Optimization

    Fingerprint

    Dive into the research topics of 'Data Science Applications in Circular Economy: Trends, Status, and Future'. Together they form a unique fingerprint.

    Cite this