TY - JOUR
T1 - Cu-based Polyoxometalate Catalyst for Efficient Catalytic Hydrogen Evolution
AU - Lv, Hongjin
AU - Gao, Yuanzhe
AU - Guo, Weiwei
AU - Lauinger, Sarah M.
AU - Chi, Yingnan
AU - Bacsa, John
AU - Sullivan, Kevin P.
AU - Wieliczko, Marika
AU - Musaev, Djamaladdin G.
AU - Hill, Craig L.
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/7/5
Y1 - 2016/7/5
N2 - Copper-based complexes have been largely neglected as potential water reduction catalysts. This article reports the synthesis and characterization of a tetra-copper-containing polyoxotungstate, Na3K7[Cu4(H2O)2(B-α-PW9O34)2]·30H2O (Na3K7-Cu4P2). Cu4P2 is a water-compatible catalyst for efficient visible-light-driven hydrogen evolution when coupled to (4,4′-di-tert-butyl-2,2′-dipyridyl)-bis(2-phenylpyridine(1H))-iridium(III) hexafluorophosphate ([Ir(ppy)2(dtbbpy)][PF6]) as a light absorber and triethanolamine (TEOA) as sacrificial electron donor. Under minimally optimized conditions, a turnover number (TON) of ∼1270 per Cu4P2 catalyst is obtained after 5 h of irradiation (light-emitting diode; λ = 455 nm; 20 mW); a photochemical quantum efficiency of as high as 15.9% is achieved. Both oxidative and reductive quenching pathways are observed by measuring the luminescence intensity of excited state [Ir(ppy)2(dtbbpy)]+∗ in the presence of Cu4P2 or TEOA, respectively. Many stability studies (e.g., UV-vis absorption, FT-IR, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy) show that catalyst Cu4P2 undergoes slow decomposition under turnover conditions; however, both the starting Cu4P2 as well as its molecular decomposition products are the dominant catalytically active species for H2 evolution not Cu or CuOx particles. Considering the high abundance and low cost of copper, the present work provides considerations for the design and synthesis of efficient, molecular, water-compatible Cu-based water reduction catalysts.
AB - Copper-based complexes have been largely neglected as potential water reduction catalysts. This article reports the synthesis and characterization of a tetra-copper-containing polyoxotungstate, Na3K7[Cu4(H2O)2(B-α-PW9O34)2]·30H2O (Na3K7-Cu4P2). Cu4P2 is a water-compatible catalyst for efficient visible-light-driven hydrogen evolution when coupled to (4,4′-di-tert-butyl-2,2′-dipyridyl)-bis(2-phenylpyridine(1H))-iridium(III) hexafluorophosphate ([Ir(ppy)2(dtbbpy)][PF6]) as a light absorber and triethanolamine (TEOA) as sacrificial electron donor. Under minimally optimized conditions, a turnover number (TON) of ∼1270 per Cu4P2 catalyst is obtained after 5 h of irradiation (light-emitting diode; λ = 455 nm; 20 mW); a photochemical quantum efficiency of as high as 15.9% is achieved. Both oxidative and reductive quenching pathways are observed by measuring the luminescence intensity of excited state [Ir(ppy)2(dtbbpy)]+∗ in the presence of Cu4P2 or TEOA, respectively. Many stability studies (e.g., UV-vis absorption, FT-IR, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy) show that catalyst Cu4P2 undergoes slow decomposition under turnover conditions; however, both the starting Cu4P2 as well as its molecular decomposition products are the dominant catalytically active species for H2 evolution not Cu or CuOx particles. Considering the high abundance and low cost of copper, the present work provides considerations for the design and synthesis of efficient, molecular, water-compatible Cu-based water reduction catalysts.
UR - http://www.scopus.com/inward/record.url?scp=84978173434&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.6b01032
DO - 10.1021/acs.inorgchem.6b01032
M3 - Article
AN - SCOPUS:84978173434
SN - 0020-1669
VL - 55
SP - 6750
EP - 6758
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 13
ER -